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Abstract—Modular composition of systems through de-
fined input/output interfaces is a wide-spread engineering
approach that allows to make the design of complicated
systems tractable. Although this approach to design has
percolated to the design of synthetic genetic circuits, it has
proved challenging to obtain predictable design outcomes.
In particular, context-dependence due to sharing a limited
pool of cellular resources is a major factor that confounds
modular composition of genetic modules. Here, we propose to
use a systems framework in which resource sharing among
different subsystems is explicitly modeled through distur-
bance inputs and disturbance outputs. Within this system
description, resource sharing results in undesired connectivity
among subsystems, which yet is explicitly accounted for design.
Accordingly, we propose to use this system framework to co-
design systems based on specifications that each subsystem
should satisfy. To this end, we provide sufficient conditions on
the system parameters such that the output of each subsystem
in the network remains in a small interval around a desired
value, as well as an algorithmic procedure to compute the
feasible region for these parameters. In general, this framework
can be used to design subsystems to satisfy a specification,
while explicitly accounting for context-dependence.

I. INTRODUCTION

In traditional engineering disciplines, such as electri-
cal engineering, mechanical engineering, and computer
systems, modular composition is a standard approach to
design complicated systems. The basic assumption is that
subsystems can be characterized by their input/output
behavior and that this behavior is not changing when
systems are composed together. It has been long rec-
ognized that modular composition is challenging when
engineering biology because, in the cell, there are many
interactions among subsystems, which go beyond what
we regard as the regulatory inputs and outputs that we
use for connecting systems to one another [1], [2], [3].
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There are many reasons for the failure of modularity in
biological circuits, such as the effect of loads (retroactiv-
ity) on a system output caused by downstream circuits
[4], [5], [6], unknown interactions between adjacent ge-
netic sequences and factors [7], [8], [9], [10], as well as
resource competition between systems [3], [2], [11], [12],
[13], [14].

In this work, we specifically focus on lack of modularity
due to resource sharing. Prior work on this topic experi-
mentally demonstrated how two genetic modules become
coupled when they become activated concurrently in the
cell even when they are not connected through regulatory
links [13]. Related work has further shown that this is
the case even if one of the genetic modules is placed
on the chromosome [14], highlighting even more this
problem as a global perturbation to all genes in the
cell. For genetic circuits, wherein more genetic modules
are connected to each other through regulatory links,
competition for resources among the modules leads to
surprising emergent circuit behavior and mathematical
models were introduced that well predict experimental
outcomes [12]. These experimentally validated models
were later adopted in a theoretical study aiming at
designing local feedback controllers to insulate genetic
modules from one another [15]. This line of work fol-
lowed the general idea of capturing resource transactions
through disturbance inputs to each genetic module and
to solve a disturbance attenuation problem [16], [17].

In this paper, we rely on the mathematical models of
genetic modules with resource competition developed in
[12] and, in particular, on their reformulation introduced
in [15]. In this reformulation, the load on resources that
a module exerts appears as a disturbance output of the
module. In turn, each module takes as disturbance input
the ensemble load on the resources that all other modules
exert. Based on this model, we determine conditions
under which a given input/output specification for each
of the genetic modules in the system can be met. To this
end, we formulate a specification feasibility problem and
provide a solution along with an algorithm to determine
the feasible region in the design parameter space.

This paper is organized as follows. In Section II, we
introduce the new system formulation and state the
feasibility problem. In Section III, we provide the main
theorem, which gives sufficient conditions for the satis-
faction of the specifications, as well as the algorithm to
compute the feasible parameter region. In Section IV, we
provide an application example.



II. PROBLEM FORMULATION
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Fig. 1. Block diagram representation of subsystem Σi.

The system model we consider in this paper, for the
process of gene expression [18], is depicted in Figure
1. This model describes the protein production process,
while accounting for the fact that multiple such systems
all share ribosomes required for gene expression [12], [13].
In what follows, we use the standard notation, in which
for a species S we let italics S denote its concentration.
The i-th subsystem is responsible for the expression of

the i-th gene, where the mRNA mi is transcribed at a
rate ri, which is then translated into protein pi. So, we
define the i-th subsystem states xi = [mi pi]

′ ∈ R2
+, with

input ui = ri ∈ R+ and output yi = pi ∈ R+, as well as
disturbance input wi ∈ R+ and output di ∈ R+. With
this, the subsystem dynamics are given by [15]

ṁi = ui − δ0mi

ṗi = αi
(mi/ki)

1 + (mi/ki) + wi
− δpi

yi = pi

di = mi/ki,

(1)

for i = {1, . . . , N}. Here, αi is the translation rate con-
stant, ki is the dissociation constant of mRNA binding
with ribosome, δ is the decay rate constant of the protein,
δ0 is the decay rate constant of mRNA. All parameters
are strictly positive.

The disturbance input wi and disturbance output di
capture the unintended interactions among subsystems.
Specifically, this model was derived in [15] and captures
the fact that ribosomes are required in the translation
step, where the mRNA binds to ribosomes to be trans-
lated to protein, which causes a “load” on the ribosome
pool. In particular, the larger mi and the smaller ki
(stronger ribosome binding site), the larger the load
di = mi/ki that subsystem Σi applies to ribosomes.
Because the decrease of translation rate that system Σi

experiences results from the overall load that all subsys-
tems apply to ribosomes, we have that the disturbance
input is given by

wi =
∑
j ̸=i

dj , (2)

which represents the effect that load on ribosomes from
all other subsystems has on the i-th subsystem. The full
derivation of this model can be found in [15].

Since in this paper we are interested in guarantees on
the steady state behavior of N interconnected systems,
we first prove uniqueness and stability of the equilibrium
point.

Lemma 1. System Σi with interconnection (2) admits a
unique equilibrium point. Furthermore, this equilibrium
point is asymptotically stable for all parameter values.

Proof: System Σi equilibrium point is given by

mi = ui/δ0 (3)

pi =
(αi/δ)(ui/kiδ0)

1 +
∑N

j=1(uj/kjδ0)
. (4)

For all parameters and inputs ui, this equilibrium point
is unique. Now to conclude about its stability we will
use the quasi-steady state approximation for the mRNA,
that is, since the mRNA dynamics are much faster
than the protein dynamics [18], we can approximate the
concentration of mRNA mi by its value at steady state
given by (3). With this, we obtain the reduced order
system

ṗi =
1

αi

(ui/kiδ0)

1 +
∑N

j=1(uj/kjδ0)
− δpi, (5)

which is a linear system with a constant input and Ja-
cobian J = diag([−δ · · · − δ]). Since the eigenvalues have
negative real part, more specifically λi = −δ, for i ∈
{1, . . . , N}, the equilibrium point is asymptotically sta-
ble. Therefore, we can conclude that the system has a
unique equilibrium point that is asymptotically stable
for all parameter values. □
We are interested in steady state behavior, so we

consider the following input/output steady state char-
acteristic of system Σi:

yi =
αi

δ

(ui/δ0ki)

1 + (ui/δ0ki) + wi
(6)

di = ui/δ0ki, (7)

and let y∗i be the output of the isolated system with ui =
r∗i > 0, i.e., yi in (6) with wi = 0, and nominal parameter
values αi = α∗

i , δi = δ∗, δ0 = δ∗0 , and ki = k∗i ∈ Ki with
Ki ⊂ R+. Now let us define the steady state I/O maps
fi : Wi → Di as

di = fi(wi) = γiwi + γi, γi =
δyi

αi − δyi
. (8)

With this, our system specification is given as follows:
Specification: Given ui = r∗i , y

∗
i , and fixed tolerances

ϵi > 0, i = {1, . . . , N}. The specifications on the
connected systems given in (2), (6), (7) are given in the
form

yi ∈ [y∗i − ϵi, y
∗
i + ϵi], i ∈ {1, ..., N}. (9)

Based on this specification, we seek to tackle two prob-
lems. First, we seek to determine sufficient conditions
on the systems’ parameters to satisfy this specification
(Problem 1). The second problem is to design the systems
such that the specification is met (Problem 2). For this
problem, we regard the ribosome binding site strengths,
captured by parameters 1/ki (see [18]) as the design pa-
rameters since they are easily and quantitatively tunable.



Problem 1 (Feasibility). Given N subsystems of the form
(1) and connection rule (2). Determine conditions on the
systems’ parameters such that the specification is met.

The practical relevance of this problem stands in
the fact that once multiple systems are concurrently
operating in the cell, they may not be able to achieve
their nominal outputs as they do in isolation because
of decreased availability of gene expression resources to
each of them. Therefore, we investigate to what extent it
is still possible to meet the specifications as the number
of subsystems increases and as the tolerance is changed.
Indeed, it is reasonable to expect that with more systems,
one may require a larger tolerance and hence a larger
degradation of the system specification.

Problem 2 (Feasible Region). With all other param-
eters fixed, compute the region for the parameters
(k1, . . . , kN ) ∈ K1 × · · · ×KN such that the specification
is met.

With this, we define the quantities

γ̃i =
δ(y∗i − ϵi)

αi − δ(y∗i − ϵi)
(10)

γ̂i =
δ(y∗i + ϵi)

αi − δ(y∗i + ϵi)
. (11)

Lemma 2. The following conditions{
di ≥ γ̃iwi + γ̃i (12)

di ≤ γ̂iwi + γ̂i, (13)

are equivalent to those in (9).

Proof: We start by showing that (9) implies (12)-
(13). The specifications given in (9) define lower and
upper bounds on the output yi, based on the tolerances
ϵi. With this, we can substitute these bounds on γi as
defined in (8), yielding

γ̃i ≤ γi ≤ γ̂i, (14)

with γ̃i as given in (10) and γ̂i as given in (11). Now we
substitute this into the I/O map given in equation (8),
which results in

γ̃iwi + γ̃i ≤γiwi + γi ≤ γ̂iwi + γ̂i

⇒ γ̃iwi + γ̃i ≤ di ≤ γ̂iwi + γ̂i,

which are the conditions presented in (12)-(13).
Now we show that (12)-(13) implies (9). We start with

(12), where we substitute di as defined in (8):

di ≥ γ̃iwi + γ̃i ⇒ γwi + γ ≥ γ̃iwi + γ̃i

⇒ γ(1 + wi) ≥ γ̃i(1 + wi) ⇒ γ ≥ γ̃i.

Now we substitute the γ̃i as defined in (10) and γ as
defined in (8). This yields

δyi
αi − δyi

≥ δ(y∗i − ϵi)

αi − δ(y∗i − ϵi)
⇒ αiδyi ≥ αiδ(y

∗
i − ϵi).

With this, we obtain yi ≥ (y∗i − ϵi). Now for (13), we
substitute di as defined in (8)

di ≤ γ̂iwi + γ̂i ⇒ γwi + γ ≤ γ̂iwi + γ̂i

⇒ γ(1 + wi) ≤ γ̂i(1 + wi) ⇒ γ ≤ γ̂i.

Now we substitute the γ̂i as defined in (11) and γ as
defined in (8). This yields

δyi
αi − δyi

≤ δ(y∗i + ϵi)

αi − δ(y∗i + ϵi)
⇒ αiδyi ≤ αiδ(y

∗
i + ϵi).

With this, we obtain yi ≤ (y∗i +ϵi). Thus, we have shown
that the conditions given in (12)-(13) are equivalent to
those in (9). □

III. PROBLEM SOLUTION

We tackle Problem 1 first, that is, we want to de-
termine if there exist parameters (k1, . . . , kn) such that
our steady state output yi stays in the prescribed region
around y∗i , with tolerances ϵi.

Let w = (w1, . . . , wN ) and d = (d1, . . . , dN ), then (2)
implies that

w = Td,

with T ∈ RN×N the interconnection matrix defined as

{T}i,j =

{
0, if i = j

1, otherwise.
(15)

In turn, (8) with yi = y∗i − ϵi can we rewritten in vector
form as

d = γ̃w + γ̃,

in which the gain matrix γ̃ ∈ RN×N is defined as

{γ̃}i,j =

{
γ̃i =

δ(y∗
i −ϵi)

αi−δ(y∗
i −ϵi)

, if i = j

0, otherwise.
(16)

The following Theorem provides a sufficient conditions
to solve Problem 1. For a matrix A, we let ρ(A) denote
the spectral radius of A.

Theorem 1. Let γ̃ be the gain matrix defined in (16),
and let T be the interconnection matrix defined in (15).
If ρ(γ̃T ) < 1, then Problem 1 has a solution.

Proof: By Lemma 2, satisfaction of the specification
is equivalent to (12)-(13) with di ≥ 0. We then focus
on providing sufficient conditions for (12)-(13) to be
satisfied.

Let us consider just the constraints of the form (12),
which, given the matrices T and γ̃, defined in (15) and
(16), can be rewritten as

d ≥ γ̃Td+ γ̃ ⇐⇒ (I − γ̃T )d ≥ γ̃,

where d = (d1, . . . , dN ) and γ̃ = (γ̃1, . . . , γ̃N ). Since γ̃ ≥ 0
and di ≥ 0, for all i, must hold from the definition of the
models, we have that if (I − γ̃T )−1 ≥ 0, i.e., (I − γ̃T )−1

has non-negative entries, then

d ≥ (I − γ̃T )−1γ̃ ≥ 0 ⇒ d ≥ 0. (17)



A sufficient condition to prove that (I − γ̃T )−1 ≥ 0 is
given by checking that (I− γ̃T )−1 is an M -matrix ([19]).
Now, given that M = (I − γ̃T ) is such that {M}i,j ≤ 0
for all i ̸= j, and given that γ̃T ≥ 0, we can exploit the
result stated in Lemma 2.5.2.1 in [19], picking α = 1, and
finally obtaining that

(I − γ̃T ) is an M -matrix ⇐⇒ 1 > ρ(γ̃T ).

We can conclude that if 1 > ρ(γ̃T ), then (I− γ̃T )−1 ≥
0 and hence (12) is satisfied for di ≥ 0. Now, we prove
the satisfaction of the conditions in (13). Let us consider
values for di, such that, di = γ̃iwi+ γ̃i. By plugging these
expressions for di into (13), we obtain

wi(γ̂i − γ̃i) + (γ̂i − γ̃i) ≥ 0,

which is always true for (k1, . . . , kN ) when (17) is satis-
fied, given that γ̃i ≤ γ̂i. To conclude, we have shown that
if ρ(γT ) < 1, then (9) is satisfied. Therefore, Problem 1
has a solution. □

Remark 1. Notice that the systems gains γi are monotoni-
cally increasing with respect to yi, meaning that the steady
state I/O maps di = fi(wi) are monotonically increasing
with respect to yi. In fact, if y∗i −ϵi ≤ y∗i +ϵi, then γ̃i ≤ γ̂i
and fi|(y∗

i −ϵi) ≤ fi|(y∗
i +ϵi).

With this we can move on to Problem 2, where we want
to find the feasible region for the systems parameters
(k1, . . . , kN ). We consider first N = 2 as an illustrative
example and then propose a general algorithm for arbi-
trary N.

A. Illustrative Example

Σ1

Σ2

r∗1

r∗2

p1(t)

p2(t)

d1
w1

w2
d2

Fig. 2. Example N = 2 subsystem network block diagram.

In the case in which N = 2, the system network takes
the simple form shown in Figure 2. In this case, we have
w1 = d2 and w2 = d1. The gains of the subsystems,
for y1 = y∗1 − ϵ1, y2 = y∗2 − ϵ2 are given by γ̃1 = δ(y∗1 −
ϵ1)/(α1−δ(y∗1−ϵ1)) and γ̃2 = δ(y∗2−ϵ2)/(α2−δ(y∗2−ϵ2)).
The gain matrix γ̃ and the interconnection matrix T take
the following forms:

γ̃ =

[
γ̃1 0
0 γ̃2

]
, T =

[
0 1
1 0

]
.

The eigenvalues of γ̃T are given by λ1 =
√
γ̃1γ̃2 and

λ2 = −
√
γ̃1γ̃2. Then, ρ(γ̃T ) =

√
γ̃1γ̃2. As a consequence,

for a solution to Problem 1 to exist, it is sufficient that√
γ̃1γ̃2 < 1. We next compute the region of (1/k1, 1/k2)

that ensures
√
γ̃1γ̃2 < 1.

Fig. 3. Feasible region for 1/k1 and 1/k2, with r∗i = (1 1) [nM ],
y∗i = (2 2) [nM ], ϵi = 0.1y∗i = (0.2 0.2) [nM ], αi =
(5.8 4.2) [nM/hr], δ = 1 [1/hr], δ0 = 0.05 [1/hr], which yields
γ̃i = (0.45 0.75) and γ̂i = (0.61 1.10).

To compute the feasible region, we first substitute (2)
and (7) in (12)-(13), to obtain these inequalities in terms
of (1/k1, 1/k2)

γ̃1

(
u2

δ0
· 1

k2

)
+ γ̃1 ≤

(
u1

δ0
· 1

k1

)
≤ γ̂1

(
u2

δ0
· 1

k2

)
+ γ̂1

(18)

γ̃2

(
u1

δ0
· 1

k1

)
+ γ̃2 ≤

(
u2

δ0
· 1

k2

)
≤ γ̂2

(
u1

δ0
· 1

k1

)
+ γ̂2,

(19)

where γ̃i is as defined in (10) and γ̂i is as defined in
(11). Then, if γ̃1 and γ̃2 satisfy

√
γ̃1γ̃2 < 1, we can

compute the (1/k1, 1/k2) feasible region directly from
the inequalities (18)-(19), which is a linear program in
the variables (1/k1, 1/k2).

One possible solution is shown in Figure 3 in terms of
1/k1 and 1/k2, that is, the polygon in cyan contain all
the points (1/k1, 1/k2) for which the specification given
in (9) holds. What we obtain is that inside the feasible
region, we can decrease concurrently both k1 and k2, so
that d1 and d2 also will increase. This, in turn, implies
that also p1, p2 will increase, keeping on satisfying the
specifications. On the other hand, on the boundaries of
the feasible region, we can decrease either k1 or k2, in
order to preserve the satisfaction of the specifications.

B. General Solution to Problem 2

Now we consider the general case in which we have N
subsystems and provide an algorithm to determine the
feasible region while allowing to change the tolerance ϵi.
Suppose we have a network composed of N subsystems,
with prescribed outputs y∗i = p∗i , with fixed input ui =
r∗i > 0 and tolerances ϵi, with γ̃i and γ̂i defined in (10)
and (11), respectively, for fixed parameter values αi, δ
and δ0. Our goal is to find the feasible region for 1/ki,
i ∈ {1, ..., N}.



In order to achieve this, we consider the inequali-
ties in (12)-(13), as they describe the feasible region.
These inequalities are linear with respect to di since
wi =

∑
j ̸=i dj , so we will first compute the polygon

that describes the feasible region for di, by computing
its vertices, then we use the linear relationship between
di and 1/ki given in (7) to obtain the vertices for the
polygon that describes the 1/ki feasible region.

To do this, we solve the following linear system of
equations

d = βTd+ β ⇐⇒ d = (I − βT )−1β, (20)

where β = (β1, . . . , βN ), d = (d1, . . . , dN ), β = diag(β)
and T is as defined in (15). It is important to note
that the conditions from Theorem 1 guarantee that the
matrix (I−βT ) is invertible. We define βi as having two
possible values, γ̃i, as given in (10), or γ̂i, as given in (11)
for i ∈ {1, . . . , N}. We then solve (20) for all possible
(β1, ..., βN ) tuples such that βi = γ̃i or βi = γ̂i. Then, to
find the vertices for the 1/ki feasible region we use the
relationship 1/ki = δ0di/ui that comes from (7).
Next, to aid in the choice of the tolerance ϵi, we

introduce a minimization problem that returns suitable
values ϵi, γ̃i and γ̂i, , for fixed parameters αi, δ and δ0.

Tolerance Minimization Problem

min

N∑
i=1

ϵi

s.t.

ϵmin ≤ ϵi ≤ ϵmax

γ̃i =
δ(p∗i − ϵi)

αi − δ(p∗i − ϵi)

ρ(diag(γ̃i)T ) < 1

To solve this minimization problem we use the
YALMIP toolbox for MATLAB [20]. The bounds on the
tolerance ϵmin and ϵmax affect the size of the feasible
region, which is useful in practice as it is challenging to
experimentally set the values of ki with precision. So,
with this in mind, we have introduced a lower bound on
the tolerance ϵi, which, in turn, makes the feasible region
larger, i.e., provides a trade-off between performance and
implementability of the design.

IV. APPLICATION EXAMPLES

Let us consider an example scenario, in which we have
a network composed of N = 2 subsystems and show
the effect of the minimum tolerance ϵmin on the feasible
region. For this, we will use the following parameters,
the subsystem input and output r∗ = p∗ = (9, 1) [nM ],
the translation rate constant αi = (2, 0.5) [nM/hr], the
decay rate constant for the protein is δ = 0.0770 [1/hr]
and for the mRNA δ0 = 0.0693 [1/hr]. Moreover, we set
the maximum tolerance ϵmax = 0.3p∗ = (2.7, 0.3) [nM ]
and for the minimum tolerance we test two different
values, the first ϵmin = 0.1p∗ = (0.9, 0.1) [nM ] and the
second ϵmin = 0.02p∗ = (0.18, 0.02) [nM ].

4 4.5 5 5.5 6 6.5 7

1/k
1

10
-3

0.016

0.018

0.02

0.022

0.024

0.026

1
/k

2

Fig. 4. Feasible region for 1/k1 and 1/k2 with different values of
ϵmin.

Figure 4 presents the (1/k1, 1/k2) feasible region for
the two values of ϵmin. From the figure, we see that
changing this variable affects the size of the feasible
region, but not its shape. This occurs because as we
increase ϵi we also decrease γ̃i and increase γ̂i. Decreasing
γ̃i will make the 1/ki coordinates of some of the vertices
smaller (the ones closest to the origin in the 1/ki axis).
Increasing γ̂i will make the 1/ki coordinates of the
remaining vertices larger (the ones furthest from the
origin in the 1/ki axis). Taken together, these result into
the observed increase in the size of the feasible region.
We conclude that ϵmin is the parameter to be adjusted
if the feasible region is too small.

Now we consider another example scenario, where we
have a network composed of N = 3 subsystems and we
wish to maintain the outputs of all subsystems around
the same value of p∗ = (100, 100, 100) [nM ] with a
minimum tolerance of ϵmin,i = 0.2p∗i = 20 [nM ] and
a maximum tolerance of ϵmax,i = 0.3p∗i = 30 [nM ].
Moreover, the inputs r∗ = (100, 100, 100) [nM ], the
translation rate constant αi = (43, 89, 62) [nM/hr], the
decay rate constant for the protein is δ = 0.0770 [1/hr]
and for the mRNA δ0 = 0.0693 [1/hr].

Solving the minimization problem, we obtain values for
the tolerance ϵi, and the gains γ̃i and γ̂i. Table I presents
the values for these variables. Note that in this case the
tolerance is the same as the minimum tolerance specified,
that is, the feasible region we will obtain can be made
smaller if the designer wishes and is able to implement
the ki with greater precision.

i 1 2 3
ϵi [nM ] 20 20 20

γ̃i 0.1673 0.0744 0.1103
γ̂i 0.2738 0.1159 0.1752

TABLE I

ϵi tolerances, γ̃i and γ̂i gains for the case N = 3

subsystems example.

Furthermore, using (20) we can find the vertices of the
(1/k1, 1/k2, 1/k3) feasible region shown in Table II and
in Figure 5, where a plot of the (1/k1, 1/k2, 1/k3) feasible



region is displayed.

1/k1 1/k2 1/k3
1.44 · 10−4 0.70 · 10−4 1.00 · 10−4

1.56 · 10−4 0.75 · 10−4 1.62 · 10−4

1.52 · 10−4 1.10 · 10−4 1.05 · 10−4

1.64 · 10−4 1.19 · 10−4 1.71 · 10−4

2.42 · 10−4 0.78 · 10−4 1.12 · 10−4

2.63 · 10−4 0.85 · 10−4 1.82 · 10−4

2.56 · 10−4 1.24 · 10−4 1.18 · 10−4

2.80 · 10−4 1.35 · 10−4 1.94 · 10−4

TABLE II

1/k feasible region vertices coordinates in the N = 3

example.

Fig. 5. Feasible region for 1/k1, 1/k2 and 1/k3.

Now we consider two modifications to this scenario, in
the first one we want Σ3 to increase its production to
p∗3 = 300 [nM ] and in addition to this, in the second
modification, we want Σ2 to also increase its production
to p∗2 = 275 [nM ]. Moreover, we perform these modifi-
cations while maintaining all other parameters at their
nominal values, but the tolerances ϵmin and ϵmax depend
on the desired output values p∗i , so the relationships
remain the same, but the actual values change.

Fig. 6. Feasible region for 1/k1, 1/k2 and 1/k3 for different desired
output values p∗.

Figure 6 shows the effects of the modifications to the
desired output levels in the feasible region, where we
can see that as we demand more protein production
from the systems we stretch the feasible region. This is
due to the increase in p∗i , which makes γ̃i and γ̂i also

increase, causing an increase in the 1/ki coordinates of
the vertices. This is especially true for γ̂i, which sees the
largest increase due to the fact that it depends on the
sum of two variables that have increased in value p∗i and
ϵi.

V. CONCLUSION and FUTURE WORK

In this work, we introduced a systems composition
formulation, in which resource sharing of genetic modules
is explicitly captured through disturbance inputs and
disturbance outputs. We used this framework to pro-
vide sufficient conditions to achieve desired subsystems’
specifications despite resource sharing. Our approach is
based on Theorem 1, which gives sufficient conditions
for the existence of a feasible region for the dissociation
constants ki, as well as a procedure to find suitable
tolerances ϵi for the output specification and the cor-
responding feasible region. An illustrative example and
the analysis of a 3 subsystem case demonstrate how to
tackle this problem with our approach.

Future work, will extend the approach to handle time-
varying specifications and also systems interconnected
by regulatory interactions. Additionally, we seek to in-
corporate other resource sharing effects, for example,
due to sharing of degradation resources (proteases and
micro RNAs) and to obtain similar conditions as those
in Theorem 1.
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