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Abstract— Mathematical models of robust biological systems
are expected to be robust against small variations in the model’s
parameters. In this paper, we investigate the robustness of the
model proposed by Laub and Loomis for the molecular network
underlying adenosine 3’,5’-cycle monophosphate (cAMP) oscil-
lations observed in populations of Dictyostelium cells 4 hours
after the initiation of development. This is performed by using
bifurcation analysis. In particular, we reduce the problem to
study the persistence of the periodic orbit that arises from Hopf
bifurcation as one key parameter is varied. By introducing
an optimization problem, we determine the maximum allowed
parameter variation under which the oscillatory behavior of
the system persists. We obtain maximum allowed variation of
0.51% and show that this bound is tight.

I. INTRODUCTION

Biological systems such as complex molecular networks,
must reliably operate under significantly different environ-
mental conditions, which can lead to large changes in the
parameters of the system. For biological systems to work reli-
ably under different conditions, it is important that prominent
characteristics of the system, such as oscillatory behavior, are
preserved despite changes in the operating environment. This
property is called robustness.

Some biological systems are clearly experimentally proved
to be robust [1], [2], [3]. If a biological system is ro-
bust, it should be expected that its mathematical model
is also robust to parameter variations [4]. In this paper,
we investigate the robustness of the model proposed by
Laub and Loomis for the molecular network underlying
adenosine 3’,5’-cycle monophosphate (cAMP) oscillations
observed in populations of Dictyostelium cells 4 hours after
the initiation of development. Since such molecular network
is experimentally known to be robust, the robustness of the
model can be considered as a tool to check the validity of
the model. To evaluate the robustness of the model we need
objective measures. One technique is to compute parameter
sensitivities which can be evaluated analytically for simple
systems and computationally for complex networks like Laub
and Loomis model.

Although single parameter insensitivity is necessary for
a robust system, it is not sufficient due to interactions
between several parameters, especially when parameters si-
multaneously differ from their nominal values. In this case,
systematic change of many parameters, which is 14 in the
Laub and Loomis (L-L) model, suffers from exponential
increase of computation in the number of parameters that
need to be changed. Therefore, sensitivity to the parameters
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has been traditionally considered through randomly varying
all parameters. Because of random change of parameters,
robustness is not guaranteed.

In [6], one of the robustness computational tools in control
theory, known as the structural singular value (SSV), is
employed to calculate the region for parameters where the
oscillatory behavior of the L-L model is preserved. In the
proposed method, first the limit cycle is determined using
first order Fourier expansion of the states with nominal
parameters. Then, the system is linearized around the approx-
imated steady-state periodic solution and SSV is applied on
the linearized system to determine the maximum parameter
variation. In [7], the integral of the square of the derivative
of the state, considered as a measure of the occurrence of os-
cillations, is minimized with respect to parameter variations
using hybrid Genetic Algorithm (HGA) [9], to achieve the
region in the parameter space that corresponds to oscillations.
The previously mentioned methods result in 8.3% and 0.6%
variation in the parameters, respectively, under which the
oscillatory behavior of the system is preserved.

In this paper, we investigate the robustness of the L-L
model using bifurcation analysis. In particular, we exploit the
fact that the equilibria of this system can be explicitly com-
puted as a function of the parameters. Thus, we can employ
the Routh-Hurwitz criterion to infer that Hopf bifurcation
occurs with respect to one parameter only, µ. As a conse-
quence, we can study the persistence of the periodic orbit as
this parameter, µ, which encompasses all other parameters,
is changed. This significantly reduces the complexity of the
problem. We then introduce an optimization problem whose
solution determines the maximum parameter variation under
which the model oscillates. The result is 0.51% variation and
simulation results show that with a slightly higher variation
the system does not oscillate. The difference between the
amount of maximum variation calculated in this paper and
that of previous ones is justified as follows. In previous
papers either the model of the system is approximated by
a linearized one or a random search method is employed
to determine the maximum allowed parameter variation. In
this paper the maximum variation is calculated based on
an analytic approach. Since the proposed method requires
an analytic expression of the equilibrium point, it can be
employed only when the equilibrium is an explicit function
of the parameters.

This paper is organized as follows. In Section II we
introduce the model of the system and the associated pa-
rameters. The analytic expression of the fixed point of the
system is derived in Section III. Using the derived fixed point
expression, the Hopf Bifurcation analysis is introduced in
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Section IV. According to the analysis introduced in Section
IV, an optimization problem is introduced in Section V,
which determines the maximum allowed parameter variation
to maintain oscillation.

II. LAUB-LOOMIS MODEL

In [5], Laub and Loomis propose a model of the molec-
ular network underling adenosine 3’,5’-cyclic monophos-
phate (cAMP) oscillations observed in populations of Dyc-
tyostelium cells. The model, based on the network depicted
in Figure 1, induces spontaneous oscillations in cAMP
observed during the early development of Dictyostelium dis-
coideum. In this model, changes in the enzymatic activities

Fig. 1. Laub and Loomis model.

of these proteins are described by the following system of
seven non-linear differential equations,

ẋ = f(x, k) =



k1x7 − k2x1x2

k3x5 − k4x2

k5x7 − k6x2x3

k7 − k8x3x4

k9x1 − k10x4x5

k11x1 − k12x6

k13x6 − k14x7


, (1)

where the state variable x = [x1, · · · , x7] represents the con-
centration of the seven proteins: x1 = [ACA], x2 = [PKA],
x3 = [ERK2], x4 = [REGA], x5 = [Internal cAMP ],
x6 = [External cAMP ] and x7 = [CAR1]. The fourteen
different coefficients ki, i = 1, · · · , 14 , are system param-
eters, and we have denoted k = (k1, · · · , k14).

It is shown in [5] that oscillations appear at the nominal
parameter values in Table 1.

Table I: Nominal values for each parameter
Parameter Units Nominal Value

k1 min−1 2.0
k2 Mol−1min−1 0.9
k3 min−1 2.5
k4 min−1 1.5
k5 min−1 0.6
k6 Mol−1min−1 0.8
k7 Mol−1min−1 1.0
k8 Mol−1min−1 1.3
k9 min−1 0.3
k10 Mol−1min−1 0.8
k11 min−1 0.7
k12 min−1 4.9
k13 min−1 23.0
k14 min−1 4.5

In the next section, the equilibria of the model are calcu-
lated analytically.

III. EQUILIBRIA OF THE SYSTEM

Let us denote by x̄ = [x̄1, · · · , x̄7] an equilibrium of the
system, that is f(x̄, k) = 0. From the 7th and 6th differential
equations of the model of the system in equation (1) we have

x̄7 =
k13

k14
x̄6, x̄6 =

k11

k12
x̄1, (2)

and therefore
x̄7 =

k13k11

k14k12
x̄1. (3)

Substituting expression (3) in the first differential equation
of (1), we have the following result

x̄1 = 0 (4)
or

x̄2 =
k1k11k13

k2k14k12
. (5)

Equation (4) and f(x̄, k) = 0 implies that

x̄1 = x̄2 = x̄5 = x̄6 = x̄7 = 0

x̄3x̄4 =
k7

k8
.

(6)

For the nonzero equilibrium, from equation (5) we have
that

x̄5 =
k4

k3
· k1k11k13

k2k14k12
. (7)

From the 3rd differential equation of (1), equation (3) and
equation (5) we observe that

x̄3 =
k2k5

k1k6
x̄1. (8)

From the 5th differential equation of (1) and equation (7) we
have that

x̄4 =
k9k3k2k14k12

k10k4k1k11k13
· x̄1. (9)

Substituting equations (8) and (9) in the 4th differential
equation of the equation (1) we have that

x̄1 =
(

k10k4k6k7k11k13

k9k3k5k8k14k12

)1/2

· k1

k2
. (10)
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Employing equation (10) in equations (2), (3), (8) and (9)
we have that

x̄3 =
(

k10k4k5k7k11k13

k9k3k6k8k14k12

)1/2

(11)

x̄4 =
(

k9k3k6k14k12k7

k10k4k5k11k13k8

)1/2

(12)

x̄6 =
k1k11

k2k12
·
(

k10k4k6k7k11k13

k9k3k5k8k14k12

)1/2

(13)

x̄7 =
k13k11k1

k14k12k2

(
k10k4k6k7k11k13

k9k3k5k8k14k12

)1/2

. (14)

Therefore, the system has two equilibrium points. One is
determined by equation (6) which we do not consider for
Hopf bifurcation, because for the states x1, · · · , x7 negative
values, which would result from oscillations, have no physi-
cal meaning. The other equilibrium with all positive elements
is determined by equations (5-7-10-11-12-13-14), which are
used for analyzing the persistence of a periodic orbit in the
next section.

IV. HOPF BIFURCATION ANALYSIS

In this section we employ the explicit representation of the
equilibria computed in the previous section to perform Hopf
bifurcation analysis, which leads to determination of the re-
gion in the parameter space corresponding to oscillations. To
determine the conditions under which the system undergoes a
Hopf bifurcation, we linearize the system about the non-zero
equilibrium. This renders the following linearization matrix

Ā=



−k2x̄2 −k2x̄1 0 0 0 0 k1

0 −k4 0 0 k3 0 0
0 −k6x̄3 −k6x̄2 0 0 0 k5

0 0 −k8x̄4 −k8x̄3 0 0 0
k9 0 0 −k10x̄5 −k10x̄4 0 0

k11 0 0 0 0 −k12 0
0 0 0 0 0 k13 −k14


.

(15)
The characteristic polynomial of the matrix Ā can be

written in the following form

F (s) = s7+z6s
6+z5s

5+z4s
4+z3s

3+z2s
2+z1s+z0, (16)

where zi, i = 0, · · · , 6, are calculated analytically in terms
of k1, · · · , k14. To analyze how the values of the parameters
zi affect the stability of the equilibrium, we use the Routh-
Hurwitz criterion. The Routh-Hurwitz table is given by the
following expression

s7 1 z5 z3 z1

s6 z6 z4 z2 z0

s5 T1 = z6z5−z4
z6

T2 = z6z3−z2
z6

T3 = z6z1−z0
z6

0
s4 U1 = T1z4−z6T2

T1
U2 = T1z2−z6T3

T1
z0 0

s3 V1 = U1T2−T1U2
U1

V2 = U1T3−T1z0
U1

0 0
s2 W = V1U2−U1V2

V1
z0 0 0

s1 R = WV2−V1z0
W 0 0 0

s0 z0 0 0 0

.

(17)

According to Routh-Hurwitz criterion, the number of
eigenvalues of Ā with positive real part is determined
by the number of sign changes in the vector C =
[1 z6 T1 U1 V1 W1 R z0]. Note that each of the components
of C is a function of k ∈ R14. In particular, we obtain that
R is the only parameter that takes both positive and negative
signs in a region Bδ∗(k∗) of interest. The reason why this
is the region of interest will be specified in the next section.

Claim 4.1: Let us define

Bδ∗(k∗) := {k ∈ R14|k = [k∗1+δ1k
∗
1 , · · · , k∗14+δ14k

∗
14], |δi| ≤ δ∗},

(18)
and δ∗ = 0.0051. Then in Bδ∗(k∗) the functions z6, T1, U1,
V1, W1 and z0 are always positive and the only function that
accepts both positive and negative values is R.

Proof 4.1: To evaluate the values of the functions z6, T1,
U1, V1, W1, R and z0 over the ball Bδ∗(k∗) we solve
the following optimization problem for each function T ∈
{z6, T1, U1, V1,W1, z0}, which gives us the minimum value
that these functions take in Bδ∗(k∗). This is provided by

min
∆

T (k∗1 + δ1k
∗
1 , · · · , k∗14 + δ14k

∗
14)

subject to: |δi| ≤ δ∗, i = 1, · · · , 14,
(19)

which is solved using gradient descent method. By
performing the proposed method we obtain the min-
imum values 15.38, 76.13, 184.64, 225.73, 128.74,
93.87 for the functions z6, T1, U1, V1, W1 and z0,
respectively. �

Remark 4.1: Another approach for calculating the optimal
value of the functions is griding and performing exhaustive
search. For each parameter, we consider the points {k∗i −
δ∗k∗i , k∗i , k∗i +δ∗k∗i }. Therefore, to perform exhaustive search
we need to evaluate each of the functions for 314 points
and find the minimum value of each function. The resulting
optimal solutions are the same as what is obtained using
gradient descent method.

Using the Routh-Hurwitz rule, we know that when R = 0,
there exist two pure imaginary poles s1,2 = ±j

√
z0
W while

the remaining eigenvalues have all negative real parts. In
addition, it can be concluded that if R > 0, all eigen-
values have negative real parts while if R < 0, there
exist two complex eigenvalues with positive real part with
the others having negative real parts. Therefore, it can be
concluded that independently of the specific combination
of parameters ki, i = 1, · · · , 14, the sign of the function
R = g(k1, · · · , k14) is the only responsible for a change in
the sign of real parts of the eigenvalues. Since the expression
of the function R is so long, we avoid writing it. Instead,
to provide a qualitative perception of the behavior of R as
function of the parameters k, Figures (1-3) provide the 2-
dimensional zero level set of the function R for different
nominal values of k.

By Claim 4.1 and Routh-Hurwitz criterion it also follows
that the only Hopf bifurcation that the system admits occurs
at R = 0. As a consequence, by changing R directly and
simulating the system as R changes, we could determine how
negative R can be taken to have persistence of the periodic

46th IEEE CDC, New Orleans, USA, Dec. 12-14, 2007 WeB01.3

617



Fig. 2. Zero level set of the function R in the k2, k14 plane for different
values of k3.

Fig. 3. Zero level set of the function R in k14, k9 plane for different values
of k3.

orbit arising when R = 0. In order to be able to perform this
one-dimensional parameter study, we need to (a) express one
of ki in equation (1) as a function of R, (b) change the value
of R indirectly by changing such ki. Tasks (a) and (b) are
possible only if we have that g(·) is locally invertible with
respect to one ki in the ball of interest Bδ∗(k∗). This is
shown by the following claim.

Claim 4.2: The function g(·) is locally invertible with
respect to k1 over the ball Bδ∗(k∗) defined in (18) where
δ∗ = 0.0051.

Proof 4.2: Let us define the function H(·) as follows

H(k) =
∂

∂k1
g(k), (20)

where k = [k1, · · · , k14]. Then we define the following
optimization problem

max
∆

H(k∗1 + δ1k
∗
1 , · · · , k∗14 + δ14k

∗
14)

subject to: |δi| ≤ δ∗, i = 1, · · · , 14
(21)

Fig. 4. Zero level set of the function R in k9, k10 plane for different values
of k3.

where ∆ = [δ1, · · · , δ14]. Using the gradient descent method,
we obtain the maximum value of H(k) over the ball Bδ∗(k∗)
as −24.9152. Therefore, ∂

∂k1
g(k) is negative over the ball

Bδ∗(k∗) which means that g(·) is monotonically decreasing
with respect to k1. Therefore, g(k) is invertible with respect
to k1 over the ball Bδ∗(k∗). �

By virtue of Claim 4.2, we can write

k1 = g−1(R, k2, · · · , k14), k ∈ Bδ∗(k∗)

where g−1(·) is continuous in R. As a result, equation (1)
can be rewritten in the following form

ẋ(t) = f(R, k2, · · · , k14, x(t)). (22)

Letting µ = −R, equation (22) can be written in the
following form

ẋ(t) = f̄(µ, x(t)), (23)

in which we did not explicitly express the dependence of f
on k1, · · · , k14 as we will study the behavior of the system
only as µ varies.

It is worth noting that the parameter µ encompasses all
parameters k1, · · · , k14. For equation (23), we thus analyze
the robustness of the orbit arising from Hopf bifurcation.
Therefore, the parameter µ can be considered as a bifurcation
parameter such that if µ = 0 there are two imaginary
eigenvalues and five eigenvalues with negative real parts; if
µ < 0, all the eigenvalues have negative real parts; if µ > 0,
there are only two eigenvalues with positive real parts. Thus
Hopf bifurcation occurs at µ = 0 independently of the values
of all other coefficients. This is because all the elements of
the first column of Routh-Hurwitz table is positive in the ball
Bδ∗(k∗) except R. At this point, the existence of the Hopf
orbit can be just investigated by varying one parameter (µ).
In particular, we can take (23) to the following normal form
on the center manifold

ṙ(t) = −µ · dr(t) + ar(t)3 + O(µ3, r(t)5)

θ̇(t) = · · ·
(24)
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with d = dλ(µ)
dµ |0 > 0, in which µ will be varied (through

varying k1) to determine how positive it can be made and
still have persistence of the periodic orbit.

In the next section, we will introduce the optimization
problem which determines the radius of the ball Bδ∗(k∗),
with respect to the norm ‖ · ‖∞, in which the function µ is
positive.

V. OPTIMIZATION SOLUTION FOR SPECIFICATION OF THE
MAXIMUM ALLOWED PARAMETER VARIATION

From equation (24) (the behavior of the trajectories on
the local center manifold) we know that for small value of
µ > 0, there exist a periodic orbit and for µ < 0 such
orbit disappears. Thus we can investigate how large µ > 0
can be before the O(µ3, r5) becomes relevant and fades
the orbit away. Since this is related only to changing one
parameter (µ), it can be simply performed by simulating the
dynamics (23) for µ > 0 and check the maximum allowed
µ, which we call µ̂, before the periodic orbit disappears.
Once the maximum radius of the ball Bδ∗(k∗) in which
the function µ is positive is determined, we calculate the
maximum amount that parameter µ varies within the ball
and check, via simulation, whether the system has a periodic
orbit over such an interval.

We propose the following procedure to determine the
maximum allowed parameter variation to preserve the oscil-
latory behavior of the system. Let us first find the maximum
percentage of the parameter uncertainty under which µ ≥ 0
via solving the following optimization problem:

min
∆

‖∆‖∞

subject to µ = −g(k∗1 + δ1k
∗
1 , · · · , k∗14 + δ14k

∗
14) ≥ 0,

(25)

where ∆ = (δ1, · · · , δ14) and k∗1 , · · · , k∗14 are he nominal
parameters. The optimization problem (25) is equivalent to
the following one:

min
∆,c

c

subject to: |δi| ≤ c, i = 1, · · · , 14
− g(k∗1 + δ1k

∗
1 , · · · , k∗14 + δ14k

∗
14) ≤ 0.

(26)

This problem is solved numerically using SQP [8] method
which is described in Appendix.

As stated in the beginning of the section, we calculate
the maximum value of parameter µ over all the parameters
k with allowed percentage of deviation from the nominal
point. Then we check, via simulation, whether the system
has a periodic orbit when µ varies from 0 to the calculated
maximum value.

Now we show that the maximum allowed variation of
parameters, for which the periodic orbit originating from
Hopf bifurcation persists, is given by the set Bδ∗(k∗), where
δ∗ = 0.0051.

Solving the optimization problem (25) results in δ∗ =
0.0051. Therefore, by Claim 4.1 we know that within the
ball Bδ∗(k∗) the necessary condition for having the periodic

orbit arising from Hopf bifurcation is satisfied. That is, there
is one pair of eigenvalues, whose real part becomes positive.
We find the largest value of µ within the ball Bδ∗(k∗) by
solving the following optimization problem

max
∆

µ = −g(k∗1 + δ1k
∗
1 , · · · , k∗14 + δ14k

∗
14)

subject to δi ≤ δ∗, i = 1, · · · , 14.
(27)

This problem is solved using gradient decent method. De-
noting the solution of (27) µ̂, we have µ̂ = 4.9828. From
Claim 4.2 we know that we can vary µ from 0 to µ̂
by varying parameter k1. By changing parameter k1 via
simulation we check if the system has a periodic orbit over
this interval. If this is the case, then the maximum percentage
of parameter variation is determined under which the system
oscillates. Simulation results show that the system has a
periodic orbit over the interval 0 < µ ≤ µ̂, which verifies
that the maximum allowed percentage of parameter variation
is δ∗ = 0.51%.

Table II shows the parameters that are different slightly
more than 0.51% from the nominal parameters and are not
associated with any limit cycle.

Table II: Perturbed values for each parameter
Parameter Units Perturbed Value

k1 min−1 1.9898
k2 Mol−1min−1 0.8954
k3 min−1 2.5128
k4 min−1 1.5076
k5 min−1 0.5969
k6 Mol−1min−1 0.8041
k7 Mol−1min−1 1.0051
k8 Mol−1min−1 1.2934
k9 min−1 0.3015
k10 Mol−1min−1 0.8041
k11 min−1 0.6964
k12 min−1 4.9250
k13 min−1 22.8827
k14 min−1 4.5229

This shows that the bound we found for δ is tight.

VI. CONCLUSION

To validate the model of biological systems, robustness of
the model can be considered as a key indicator. In this paper,
we investigate the robustness of the Laub-Loomis model
using bifurcation analysis. In previous work, µ analysis and
global/hybrid optimization are used to evaluate the robust-
ness of the model. Since these approaches are based on either
approximation of the model of the system by a linear one or
random search methods, the outcome of these methods are
not guaranteed to determine the maximum allowed variation
in the parameters of the model under which the system
preserves oscillatory behavior. In this paper the fixed point of
the system is derived explicitly as a function of parameters
and a bifurcation analysis based on Routh-Hurwitz method is
introduced, which determines maximum allowed uncertainty
of 0.51%. This bound is tighter than the one that is found
using µ analysis or global/hybrid optimization methods. This
method can be applied on more general models where the
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fixed point of the system can be explicitly represented as
a function of parameters of the system. We will explore in
future work the applicability of the proposed methodology
to other problems in order to study its generality.
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APPENDIX

The sequential quadratic programming (SQP) method is
employed to solve the problem (26) numerically. According
to this method, the nonlinear inequality is linearized around
some feasible initial solution ∆1 and the following LP is
solved:

min
∆,c

c

subject to: |δi| ≤ c, i = 1, · · · , 14

− g(k∗1 + δ1
1k∗1 , · · · , k∗14 + δ1

14k
∗
14)

−∇kg(k∗1 + δ1
1k∗1 , · · · , k∗14 + δ1

14k
∗
14)

T×
[k∗1(δ1 − δ1

1), · · · , k∗14(δ14 − δ1
14)]

T ≤ 0.
(28)

If we define

v :=


k∗1 0 · · · 0
0 k∗2 · · · 0
...

. . .
0 0 · · · k∗14

∇kg(k∗1 + δ1
1k∗1 , · · · , k∗14 + δ1

14k
∗
14)

w := −g(k∗1 + δ1
1k∗1 , · · · , k∗14 + δ1

14k
∗
14) + ∆1v,

(29)

then problem (28) can be written in the following form:

min
∆,c

c

subject to: |δi| ≤ c, i = 1, · · · , 14
w −∆v ≤ 0.

(30)

If w ≤ 0 the problem has the trivial solution ∆ = 0.
Otherwise, the problem has the following solution:

S =
w∑14

j=1 |vj |
δ∗i = sign(vi)S.

(31)

Using (31), we perform SQP iteration until the solutions
converge to the optimal solution of the problem (25).
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