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Abstract— Multistable dynamical systems are ubiquitous
in nature, especially in the context of regulatory networks
controlling cell fate decisions, wherein stable steady states
correspond to different cell phenotypes. In the past decade, it
has become experimentally possible to “reprogram” the fate
of a cell by suitable externally imposed input stimulations.
In several of these reprogramming instances, the underlying
regulatory network has a known structure and often it falls
in the class of cooperative monotone dynamical systems. In
this paper, we therefore leverage this structure to provide
concrete guidance on the choice of inputs that reprogram a
cooperative dynamical system to a desired target steady state.
Our results are parameter-independent and therefore can serve
as a practical guidance to cell-fate reprogramming experiments.

I. INTRODUCTION

Multistability, that is, the co-existence of multiple
asymptotically stable steady states, is a common feature of
many dynamical systems, especially of those capturing the
dynamics of gene regulatory networks (GRNs) implicated in
cell fate decisions [1]. In these systems, each stable steady
state typically represents one specific cell phenotype, such
as skin, blood, or pluripotent cell types, and transitions
from less differentiated to more specialized phenotypes are
orchestrated in the natural process of cell differentiation [2].
For decades, a popular metaphor due to Waddington [3]
was used to explain the concept that the process of cell
differentiation is irreversible: a ball (the cell phenotype) rolls
down a hill under the effect of gravity starting from the top of
the hill (pluripotent stem cell type) and ending in the lowest
basins (terminally differentiated cells).

It was only in recent years that ground-breaking exper-
iments demonstrated that the process can actually be reversed
[4], although with very low efficiency [5], and that cell types
can also be interconverted [6], that is, the fate of a cell can
be reprogrammed [7]. In reprogramming practices, external
(positive or negative) stimulations are applied to select nodes
of a GRN, by increasing the rate of production of the tran-
scription factor (TF) in the node (most common approach) or
by enhancing its degradation [8]. Selecting the nodes where
the input stimulation needs to be applied and the required
stimulation type (positive or negative) for triggering a desired
state transition typically relies on biological intuition and on
trial-and-error experiments [9].
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Many GRNs involved in important cell fate decisions
have been experimentally characterized, such that at least
the topology of the network is known [7], [10], [11], [12].
Examples include the so-called fully connected triad [10],
describing the core pluripotency network controlling main-
tenance of pluripotency; the PU.1/GATA1 network [12] con-
trolling transition to the myeloid lineage or to the erythroid
lineage from the multipotent common myeloid progenitor
cell type; and more extended regulatory networks in which
these core motifs are included (see [13], for example). It
turns out that these core network motifs belong to the class
of monotone dynamical systems (cooperative or competitive)
[14] or can be decomposed into interconnection of monotone
systems [15], [16]. In particular, the pluripotency network
(see [17]) and the PU.1/GATA1 network, as we demonstrate
in this paper, belong to the class of generalized cooperative
systems [14].

Theoretical studies of multistability in monotone dy-
namical systems have appeared before, most notably in the
works of [18], [19], [20], which provide easily checkable
graphical conditions for characterizing global stability be-
havior and apply these general checks to biological systems.
Apart from these theoretical works, most of the available
studies of multistability typically take a computational ap-
proach through either bifurcation tools [21] or through
sampling-based methods to determine parameter conditions
for a desired stability landscape [22], [23]. Multi-stability of
specific systems such as the pluripotency network and the
PU.1/GATA1 network has been subject of a number of stud-
ies in the systems biology literature [11], [12]. These works
investigate parameter conditions under which the system
under study can be bistable or tristable, and some of these
also study how some input parameters can be transiently
changed in order to trigger a transition between the steady
states. The approaches used in these studies commonly rely
on graphical methods, such as nullcline analysis for systems
in two dimensions, bifurcation analysis of one parameter at
the time, and computational simulation to explore parameter
spaces with sampling-based methods.

In this paper we focus on the class of generalized
cooperative dynamical systems with inputs and address the
question of what nodes need to be stimulated with what
input (positive or negative) to trigger a transition to a desired
target stable steady state. In particular, we leverage the
theory of generalized cooperative dynamical systems [14]
to provide general criteria based only on system’s structure
(as opposed to parameter values) and input type (positive or
negative) to select appropriate stimulation for a given state
reprogramming task. To this end, the paper is organized as
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follows. In Section II, we describe the PU.1/GATA1 network
as a motivating example. In Section III, we formally define
generalized cooperative monotone dynamical systems, and
state the problem definition. In Section IV, we present our
results, and apply them to the PU.1/GATA1 network in
Section V. Finally, in Section VI, we present our conclusions.

II. MOTIVATING EXAMPLE

We consider the interaction network between transcrip-
tion factors PU.1 and GATA1, known to be the core network
controlling lineage specification of hematopoietic stem cells
(HSCs), which give rise to all the blood cells [12]. PU.1 and
GATA1 mutually repress each other, while also undergoing
self-activation. This interaction network motif is shown in
Fig. 1A. The motif results in three stable steady states: one
characterized by a high concentration of PU.1 and a low
concentration of GATA1, which corresponds to the myeloid
lineage; one characterized by a low concentration of PU.1
and a high concentration of GATA1, which corresponds
to the erythrocyte lineage; and one characterized by an
intermediate level of PU.1 and GATA1, which corresponds
to the progenitor cell.

Multiple ordinary differential equation (ODE) models
that capture these interactions and give rise to tristability
have been proposed [24]. For the purpose of this example,
we use the following Hill function based description of the
system:

ẋ1 =
β1 + α1(x1/k1)n1

1 + (x1/k1)n1 + (x2/k2)n2
− γ1x1,

ẋ2 =
β2 + α2(x2/k3)n3

1 + (x2/k3)n3 + (x1/k4)n4
− γ2x2.

(1)

Here, x1 and x2 are the concentrations of the two species,
PU.1 and GATA1, β1, β2 are the rate constants of leaky
expression of the species, α1, α2 are the activation rate
constants, k1, k2, k3 and k4 are the apparent dissociation
constants, n1, n2, n3 and n4 are the Hill function coeffi-
cients, and γ1, γ2 are the decay rate constants of the species.

This ODE model, for certain parameter values, is
tristable (with three stable steady states, and two unstable
steady states). The nullclines and steady states for such a
tristable system are shown in Fig. 1B. Here, steady states
S1 and S2 represent the differentiated states, the erythrocyte
lineage and the myeloid lineage, respectively. The state
S0 represents the undifferentiated progenitor cell. The key
question for reprogramming cells (converting one cell type
to another using external inputs) is then a question of
reachability of these different steady states. In particular,
we consider constant external inputs such that the trajectory
of the system under this input converges inside the region
of attraction of the desired steady state. Once this external
input is removed, the system’s trajectory then converges to
this steady state. The question we ask, then, is when such
an input exists, that can trigger a transition to a given steady
state, for example S0, starting from either a particular initial
state (such as S1 or S2) or from any initial state, and further,
what this input is. For a specific 2D system as in eqn. (1), it is

X1 X2

(A) (B)

S1

S0

S2

x2

x1

Fig. 1: The PU.1-GATA1 system. (A) The interaction graph
between the two species: PU.1 denoted here as X1, and GATA1
denoted here as X2. Each species represses the other, while also
self-regulating in the form of self-activation. (B) The nullclines
of system (1), steady states (stable represented by filled and
unstable by empty circles) and the vector-field. Steady state S1

with high GATA1 and low PU.1 represents the erythrocyte lineage,
steady state S2 with low GATA1 and high PU.1 represents the
myeloid lineage, and the intermediate steady state S0 represents
the progenitor state. The parameter values used are: α1 = α2 = 5
nM/s, β1 = β2 = 5 nM/s, k1 = k3 = 1 nM, k2 = k4 = 2 nM,
γ1 = γ2 = 5 s−1, n1 = n2 = n3 = n4 = 2.

possible to gain insight into these questions using geometric
intuition from nullcline analysis. However, the way in which
these nullclines change with parameters may be non-trivial,
and hence it may be difficult to obtain a definite answer.
For systems with dimension higher than two, geometric
intuition is often not possible. Therefore we seek a strategy
for selecting the appropriate inputs for reprogramming based
on the structure of the underlying network (and not specific
parameter values) and valid for high-dimensional systems. To
this end, we consider the reprogramming problem for multi-
stable, cooperative monotone dynamical systems, of which
the PU.1/GATA1 network of Fig1(A) is an example. The
next section formally defines these terms.

III. BACKGROUND: SYSTEM AND PROBLEM DEFINITION

A. Cooperative monotone dynamical systems

This section formally defines cooperative monotone
dynamical systems. We first define a partial order “ ≤ ”
to compare two vectors in Rn. We then use this definition of
a partial order to define a cooperative monotone dynamical
system. These systems describe some commonly occurring
multi-stable biological network motifs. They have properties
that allow geometric reasoning to be used to obtain strong
results on reprogrammability, and further, are easily recog-
nized by their graphical structure.

Definition 1: A partial order ≤ on a set S is a binary
relation that is reflexive, antisymmetric, and transitive. That
is, for all a, b, c ∈ S, the following are true:

(i) Reflexivity: a ≤ a.
(ii) Antisymmetry: a ≤ b and b ≤ a implies that a = b.

(iii) Transitivity: a ≤ b and b ≤ c implies that a ≤ c.
Examples. On the set S = Rn, the following are partial
orders:
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(i) x ≤ y if xi ≤ yi for all i ∈ {1, ..., n}.
(ii) x ≤ y if xi ≤ yi for i ∈ I1 and xj ≥ yj for j ∈ I2,

where I1 ∪ I2 = {1, ..., n}.
To more easily represent the partial orders above, we intro-
duce some notations from [14]. Let m = (m1,m2, ...,mn),
where mi ∈ {0, 1}, and

Km = {x ∈ Rn : (−1)mixi ≥ 0, 1 ≤ i ≤ n}.

Km is an orthant in Rn, and generates the partial order ≤m
defined by x ≤m y if and only if y − x ∈ Km. We write
x <m y when x ≤m y and x 6= y, and x�m y when x ≤m
y and xi 6= yi,∀i ∈ {1, ..., n}. Note that, for the examples
above, the corresponding m is: (i) mi = 0 ∀i ∈ {1, ..., n},
i.e., Km = Rn+; (ii) mi = 0, ∀i ∈ I1, and mj = 1, ∀j ∈ I2.

We consider a system Σu of the form: ẋ = f(x, u)
with x ∈ X ⊂ Rn+ and u ∈ U ⊂ Rp+ a constant input
vector. Let the flow of system Σu starting from x = x0 be
denoted by φu(t, x0). The flow of the system with u = 0 is
denoted by φ0(t, x0). The domain X is said to be pm-convex
if tx + (1 − t)y ∈ X whenever x, y ∈ X , 0 < t < 1, and
x ≤m y [14].

Definition 2: System Σu is said to be a cooperative
monotone system with respect to Km if domain X is pm-
convex and

(−1)mi+mj
∂fi
∂xj

(x, u) ≥ 0, ∀i 6= j, ∀x ∈ X, ∀u ∈ U. (2)

For convenience, we include Proposition 5.1 from [14] here,
stated as a Lemma:

Lemma 1: [14] Let X be pm-convex and f be a
continuously differentiable vector field on X such that (2)
holds. Let <r denote any one of the relations ≤m, <m,�m.
If x <r y, t > 0 and φu(t, x) and φu(t, y) are defined, then
φu(t, x) <r φu(t, y).
A cooperative monotone dynamical system is easily recog-
nized by its graphical structure. Assume that the system Σu
is sign-stable (i.e., ∂fi

∂xj
(x, u), i 6= j keeps the same sign for

all x ∈ X) and sign-symmetric (i.e., ∂fi
∂xj

∂fj
∂xi
≥ 0 for all

x ∈ X). We consider the graph G corresponding to system
Σu with n nodes where an undirected edge connects two
nodes i, j if at least one of ∂fi

∂xj
or ∂fj

∂xi
has a non-zero value

somewhere in X . Assign a “+” or “-” sign depending on
the sign of the partial derivative of the edge. Then Σu is
cooperative in X if and only if for every closed loop in G,
the number of edges with a “-” sign is even [14].

Consider the extended system Σ′u:

ẋ = f(x, u), u̇ = 0, (3)

with states x ∈ X ⊂ Rn+ and u ∈ U ⊂ Rp+. Since u̇ = 0,
the trajectories x(t) for this system with u(0) = u0 are the
same as that of the original system Σu0 : ẋ = f(x, u0).

Lemma 2: If system Σu : ẋ = f(x, u) is cooperative
with respect to Km for a fixed u, then the extended system
Σ′u is cooperative with respect to Km ×Km′ , where m′ =
(m′1,m

′
2, ...,m

′
p) and m′k ∈ {0, 1}, if and only if ∀i ∈

{1, ..., n},∀k ∈ {1, ..., p},∀x ∈ X,∀u ∈ U :

(−1)mi+m′
k
∂fi
∂uk

(x, u) ≥ 0.

Proof: For this extended system with state (x, u)T ∈
Rn+p+ to be cooperative, the following must be true for
all x ∈ X and u ∈ U according to condition (2) for
cooperativity:

(−1)mi+mj
∂fi
∂xj

(x, u) ≥ 0, ∀i 6= j ∈ {1, ..., n}. (4)

(−1)mi+m′
k
∂fi
∂uk

(x, u) ≥ 0,∀i ∈ {1, .., n},∀k ∈ {1, .., p}. (5)

Since the system Σu is cooperative with respect to Km,
condition (4) is satisfied.

Corollary 1: Consider the case where
the function f(x, u) takes the form f =
(f1(x, u1), .., fi(x, ui), .., fn(x, un)), i.e., each state xi
is given a single input ui, and thus, p = n. The extended
system is cooperative with respect to Km × Km′ , where
m′ = (m′1, ...,m

′
n) satisfies the following. If ∂fi

∂ui
≥ 0

(positive stimulation), then m′i = mi . If ∂fi
∂ui
≤ 0 (negative

stimulation), then m′i = 1−mi.

B. Problem definition: Reprogrammability of multi-stable
systems

We consider a dynamical system Σu of the form:

ẋ = f(x, u), (6)

where state x ∈ X ⊂ Rn+ and a constant input vector u ∈
U ⊂ Rn+. Let S be the set of stable steady states of the
system Σ0 : ẋ = f(x, 0). Further, we let Ru(S) denote the
region of attraction of a stable steady state S of system Σu.
The region of attraction Ru(S) is the set of all states x such
that limt→∞ φu(t, x) = S [25].

We define two concepts of reprogrammability. For
system Σ0 to be strongly reprogrammable to a steady state
S0 ∈ S, there must exist an input u such that a trajectory of
Σu starting from any initial condition, must converge inside
the region of attraction (defined with respect to Σ0) of S0.
When the input is removed, then, the system’s trajectory
converges to the desired steady state S0. We say that the
system Σ0 is weakly reprogrammable to a steady state S
from another steady state S̄ if there exists an input u such
that a trajectory of Σu starting from S̄ converges to the region
of attraction of S, defined with respect to Σ0. These two
concepts are formalized below in Definitions 3 and 4.

Definition 3: We say that system Σ0 is strongly re-
programmable to a steady state S ∈ S provided there is an
input u ∈ U such that for system Σu, for all x0 ∈ Rn+, the
omega-limit set ωu(x0) is such that ωu(x0) ⊂ R0(S).

Definition 4: We say that system Σ0 is weakly repro-
grammable to a steady state S ∈ S from a steady state S̄ ∈ S,
with S 6= S̄, provided there exists a u ∈ U such that the
omega-limit set ωu(S̄) is such that ωu(S̄) ⊂ R0(S).

To state our results about reprogrammability for coop-
erative, monotone dynamical systems, we make the following
assumptions on Σu.

Assumption 1: The function f(x, u) is C1 continuous.
The trajectories x(t) of Σu are bounded for any given u and
for all t ≥ 0.
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Assumption 2: The system Σu is a monotone coopera-
tive system with respect to some Km, as defined in Definition
2.

Assumption 3: The function f(x, u) takes the form
f(x, u) = (f1(x, u1), .., fi(x, ui), .., fn(x, un)), i.e., each
state xi takes a single input ui.

Assumption 4: The system Σ0 takes the form:
fi(x, 0) = Hi(x) − γix, where Hi(x) ∈ C1, 0 < Hi(x) ≤
HiM ,∀x ∈ X , and γi is a positive constant. Inputs to
the system are given as follows. For positive stimulation,
fi(x, ui) = Hi(x) − γix + ui. For negative stimulation,
fi(x, ui) = Hi(x)− (γi + ui)x.
Note that when system Σu satisfies Assumption 4, it also
satisfies Assumption 1. Since Hi(x) ∈ C1, the function
fi(x, ui) ∈ C1, and therefore f(x, u) is C1 continuous.
Further, for positive stimulation, when xi > HiM+ui

γi
, ẋi < 0.

Thus, xi(t) ≤ max(HiM+ui

γi
, xi(0)) for all t ≥ 0. Similarly,

for negative stimulation, xi(t) ≤ max( HiM

γi+ui
, xi(0)) for all

t ≥ 0. Since x ∈ Rn+, xi(t) ≥ 0. Thus, the trajectories of the
system Σu are bounded for any given u and for all t ≥ 0.

IV. RESULTS

This section states results about the reprogrammability
of steady states in cooperative monotone dynamical systems.
The question we wish to address is: for each steady state
in S, what inputs, if any, make the system strongly repro-
grammable to that steady state, and what inputs, if any, make
a given steady state weakly reprogrammable to another given
steady state. We first show that the set of steady states of
Σ0, S, has a minimum and a maximum. We then present
theorems that provide a strategy for selecting the inputs
required to strongly reprogram system Σ0 to these minimal
and maximal steady states of Σ0. Further, our results rule out
certain key input types to strongly reprogram system Σ0 to
other intermediate steady states. Based on this set of results,
possible strategies are proposed to reprogram system Σ0 to
intermediate steady states. To present our results, we first
define the following exhaustive list of mutually exclusive
input types:

(i) Input of type 1: An input of type 1 satisfies the
following: for all i ∈ {1, ..., n}, if mi = 0 then ∂fi/∂ui ≥ 0
(positive/no stimulation), and if mi = 1 then ∂fi/∂ui ≤ 0
(negative/no stimulation). Further, for at least one i, ∂fi/∂ui
is not identically 0 everywhere.

(ii) Input of type 2: An input of type 2 satisfies the
following: for all i ∈ {1, ..., n}, if mi = 1 then ∂fi/∂ui ≥ 0
(positive/no stimulation), and if mi = 0 then ∂fi/∂ui ≤ 0
(negative/no stimulation). Further, for at least one i, ∂fi/∂ui
is not identically 0 everywhere.

(iii) Input of type 3: An input such that, there exists
at least one i ∈ {1, ..., n} such that if mi = 0, ∂fi/∂ui ≥ 0
and if mi = 1, ∂fi/∂ui ≤ 0 (and ∂fi/∂ui not identically
0 everywhere); and at least one j ∈ {1, ..., n} such that if
mj = 0, ∂fj/∂uj ≥ 0 and if mj = 1, ∂fj/∂uj ≤ 0 (and
∂fj/∂uj not identically 0 everywhere).

Lemma 3: Under Assumptions 1 and 2, the set of
steady states S of system Σ0 has a minimum and a maximum
with respect to the partial order ≤m.

Proof: We first prove that the set S has a maximum
with respect to ≤m. Let x̄ ∈ X be such that x̄ ≥m S for
all S ∈ S. Then, by assumption 2, ω0(x̄) ≥m S for all
S ∈ S, under Lemma 1. Since for a cooperative monotone
dynamical system that is bounded, by Proposition 2.1 from
[14], ω0(x̄) is a steady state, therefore, ω0(x̄) ∈ S. Thus,
ω0(x̄) = max(S), and therefore S has a maximum. To
prove that the set has a minimum, let x̄ ∈ X be such that
x̄ ≤m S for all S ∈ S. Then, similar to the reasoning above,
ω0(x̄) ≤m S for all S ∈ S, and ω0(x̄) ∈ S. Thus, S has a
minimum.
Remark: Recall that x ≤m y implies that for states where
mi = 0, xi ≤ yi, and for states where mi = 1, xi ≥ yi.
Thus, a maximum S∗ with respect to the partial order ≤m
is such that, for states where mi = 0, S∗i = maxS∈S(Si),
and for states where mi = 1, S∗i = minS∈S(Si). Here, Si
denotes the ith component of the steady state S. Similarly,
a minimum S∗∗ with respect to the partial order ≤m is such
that, for states where mi = 0, S∗∗i = minS∈S(Si), and for
states where mi = 1, S∗∗i = maxS∈S(Si).

In the next two results, we show that inputs of type 1
and 2 can never make system Σ0 strongly reprogrammable
to an intermediate steady state.

Theorem 1: Under Assumptions 1, 2 and 3, for any
input of type 1, system Σ0 is not strongly reprogrammable
to any steady state S 6= max(S).

Proof: Consider the extended system Σ′u: ẋ =
f(x, u), u̇ = 0 with an input of type 1. Then, by Corollary 1,
we see that the extended system is a monotone cooperative
system with respect to Km × K(0,0,...,0) = Km × Rn+.
We denote the corresponding partial order by ≤m+. For
this extended system, we consider the trajectories origi-
nating from the following initial conditions: (max(S), 0)
and (max(S), u0), where u0 ∈ Rn+. Note that these initial
conditions are ordered, i.e., (max(S), 0) ≤m+ (max(S), u0).
Since (max(S), 0) is a steady state of the extended sys-
tem, by the cooperativity of the extended system, we have
that max(S) ≤m φu0

(t,max(S)), under Lemma 1. Hence,
ωu0(max(S)) ≥m max(S).

We now consider the system Σ0: ẋ = f(x, 0), starting
at an initial condition z ≥m max(S). By the cooperativity of
Σ0, we have that ω0(z) ≥m max(S), under Lemma 1. Since
ω0(z) ∈ S, we have that ω0(z) = max(S). Thus, for any
z ≥m max(S), z ∈ R0(max(S)). Thus, ωu0

(max(S)) ∈
R0(max(S)). That is, for the system Σu with an input of
type 1, any trajectory starting at max(S) will converge to a
steady state in the region of attraction (for Σ0) of max(S).
Thus, Σ0 is not strongly reprogrammable to any steady state
other than max(S), since there exists an x0 such that ωu(x0)
6∈ Ru(S), ∀S 6= max(S).

Theorem 2: Under Assumptions 1, 2 and 3, for any
input of type 2, system Σ0 is not strongly reprogrammable
to any steady state S 6= min(S).

Proof: Consider the extended system Σ′u: ẋ =
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f(x, u), u̇ = 0 with an input of type 2. Then, by Corollary 1,
we see that the extended system is a monotone cooperative
system with respect to Km × K(1,1,...,1) = Km × Rn−.
We denote the corresponding partial order by ≤m−. For
this extended system, we consider the trajectories origi-
nating from the following initial conditions: (min(S), 0)
and (min(S), u0), where u0 ∈ Rn+. Note that these initial
conditions are ordered, i.e., (min(S), 0) ≥m− (min(S), u0).
Since (min(S), 0) is a steady state of the extended sys-
tem, by the cooperativity of the extended system, we have
that min(S) ≥m φu0

(t,min(S)), under Lemma 1. Hence,
ωu0

(min(S)) ≤m min(S).
We now consider the system Σ0: ẋ = f(x, 0), starting

at an initial condition z ≤m min(S). By the cooperativity
of Σ0, we have that ω0(z) ≤m min(S), under Lemma 1.
Since ω0(z) ∈ S, we have that ω0(z) = min(S). Thus, for
any z ≤m min(S), z ∈ R0(min(S)). Thus, ωu0

(min(S)) ∈
R0(min(S)). That is, for the system Σu with an input of
type 2, any trajectory starting at min(S) will converge to a
steady state in the region of attraction (for Σ0) of min(S).
Thus, Σ0 is not strongly reprogrammable to any steady state
other than min(S), since there exists an x0 such that ωu(x0)
6∈ Ru(S), ∀S 6= min(S).

Lemma 4: For system Σu satisfying Assumption 4,
consider the dynamics of a node with positive stimula-
tion: ẋi = Hi(x) + ui − γix, and ui ≥ 2HiM . Then,
limt→∞ xi(t) ≥ maxS∈S(Si) independent of the initial
condition.

Proof: See [17].
Lemma 5: For system Σu satisfying Assumption 4,

consider the dynamics of a node with negative stimulation:
ẋi = Hi(x) − (γi + ui)xi, and ui ≥ HiM

minS∈S(Si)
− γi.

Then, limt→∞ xi(t) ≤ minS∈S(Si) independent of the initial
condition.

Proof: Consider the following systems: żi = −(γi +
ui)zi and ˙̃xi = Hi(x̃) − (γi + ui)x̃i. The second system
can be veiwed as the perturbed version of the first system,
with Hi(x̃) being the disturbance, which is globally bounded
by HiM . Then, we can apply the robustness result from
contraction theory [26] to obtain: limt→∞ |x̃i(t) − 0| ≤
HiM

γi+ui
. Since x̃i(t) ≥ 0 and ui ≥ HiM

minS∈S(Si)
− γi, we have

that limt→∞ x̃i(t) ≤ minS∈S(Si). Note that since under
Assumption 4, Hi(x) > 0, Si 6= 0 for any i and any S,
since fi(x, 0) = Hi(x) − γixi = Hi(x) 6= 0 for xi = 0.
Thus, minS∈S(Si) 6= 0.

In Theorem 3, we show that large enough inputs of
type 1 can make Σ0 strongly reprogrammable to max(S),
and inputs of type 2 can make Σ0 strongly reprogrammable
to min(S).

Theorem 3: Under Assumptions 2, 3 and 4, a suffi-
ciently large input of type 1 ensures that Σ0 is strongly
reprogrammable to the steady state max(S), and a suffi-
ciently large input of type 2 ensures that Σ0 is strongly
reprogrammable to the steady state min(S).

Proof: Consider a u such that ui = 2HiM if mi = 0,
and ui = HiM

minS∈S(Si)
− γi for mi = 1. Then, using Lemma

4, we have that for mi = 0, limt→∞ xi(t) ≥ maxS∈S(Si)

for all xi(0). Using Lemma 5, we have that for mi = 1,
limt→∞ xi(t) ≤ minS∈S(Si) for all xi(0). Note that if x, y
are such that for a state where mi = 0, xi ≤ yi, and
for a state where mi = 1, xi ≥ yi, then x ≤m y. Thus,
ωu(x0) ≥m max(S), ∀x0 and ∀u ≥ u with an input of type
1. By monotonicity, if z ≥m max(S), ω0(z) = max(S).
Thus, ωu(x0) ⊂ R0(max(S)) ∀x0. Thus, Σ0 is strongly
reprogrammable to max(S).

Consider a u such that ui = 2HiM if mi = 1, and
ui = HiM

minS∈S(Si)
− γi for mi = 0. Then, using Lemma 4,

we have that for mi = 1, limt→∞ xi(t) ≥ maxS∈S(Si)
for all xi(0). Using Lemma 5, we have that for mi = 0,
limt→∞ xi(t) ≤ minS∈S(Si) for all xi(0). Using the same
reasoning as above, we have that ωu(x0) ≤m min(S), ∀x0
and ∀u ≥ u with an input of type 2. Under Lemma 1, if z ≤m
min(S), ω0(z) = min(S). Thus, ωu(x0) ⊂ R0(min(S)) ∀x0.
Thus, Σ0 is strongly reprogrammable to min(S).

Finally, in Theorem 4, we analyze the weak repro-
grammability of Σ0 to intermediate steady states using inputs
of type 1 and type 2.

Theorem 4: Consider two steady states S, S̄ ∈ S such
that S <m S̄. Let system Σu satisfy assumptions 2, 3 and 4.
Then the following is true:

(a) Σ0 is not weakly reprogrammable to S̄ from S for any
input of type 2,

(b) There exist a u1, u2 ∈ Rn+ such that for an input u
of type 1 with u ≤ u1 or u ≥ u2, Σ0 is not weakly
reprogrammable to S̄ from S if S̄ 6= max(S),

(c) Σ0 is not weakly reprogrammable to S from S̄ for any
input of type 1, and

(d) There exist a ū1, ū2 ∈ Rn+ such that for an input u
of type 2 with u ≤ ū1 or u ≥ ū2, Σ0 is not weakly
reprogrammable to S from S̄ if S 6= min(S).
Proof: (a) Consider the extended system Σ′u: ẋ =

f(x, u), u̇ = 0 with an input of type 2. Then, by Corollary 1,
we see that the extended system is a monotone cooperative
system with respect to Km × K(1,1,...,1) = Km × Rn−.
We denote the corresponding partial order by ≤m−. Then,
(S, 0) ≥m− (S, u) for all u ∈ Rn+, under Lemma 1.
Thus, φ0(t, S) = S ≥m φu(t, S) for all u ∈ Rn+. Thus,
ωu(S) ≤m S, and therefore ωu(S) 6∈ R0(S̄) since S̄ ≥m S,
for all u. Thus, for an input of type 2, Σ0 is not weakly
reprogrammable to S̄ from S.

(b) Consider Σu with u small. Since S is a stable
equilibrium for Σ0, it follows that ∂f(x,u)∂x

∣∣∣
S,0

is Hurwitz and

hence non-singular. Since it is a continuous function of u and
x, it follows from the implicit function theorem that there is
an open ball B ⊂ U about u = 0 such that x̄(u) is a locally
unique solution to f(x, u) = 0 for u ∈ B; furthermore x̄(u)
is a continuous function of u. Therefore, for small u, we will
have that x̄(u) is close to 0̄ = S. We can thus pick u small
enough such that x̄(u) is in the region of attraction of S.
Therefore, there is an input u1 > 0 sufficiently small such
that if u ≤ u1 the system is not reprogrammed from S to S̄.
The fact that there exists a u2 sufficiently large that if u ≥ u2,
the system is not reprogrammed to S but in fact to maxS
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follows from Theorem 3.
(c), (d): The proof is similar to that for (a), (b).
Theorem 4 shows that inputs of type 1 and 2 are not

suited to achieve even weak reprogrammability to intermedi-
ate steady states. We note that, if u1 > u2 or ū1 > ū2, there
is no input of type 1 or 2 that allows weak reprogrammability
to an intermediate steady state. Further, even if this were not
the case, u1, u2, ū1 and ū2 depend on the parameters of the
system. The success of reprogramming using such an input
would therefore be highly susceptible to uncertainty in both
parameters and initial states. Therefore, reprogramming to
an intermediate steady state may be more promising using
inputs of type 3. We note however that, as the system under
consideration increases in dimension, the number of type 3
inputs would increase combinatorially with the number of
dimensions. We leave this question for future work.

To summarize, we provide an intuitive explanation
for why certain input types are better suited to reprogram
the system to specific steady states. Inputs of type 1 are
the “maximizing” inputs. For nodes where the partial order
≤m implies xi ≤ yi, we apply a positive stimulation (thus
attempting to increase the concentration of that node). For
nodes where the partial order ≤m implies xi ≥ yi, we apply
a negative stimulation. Both these make it so that the new
state that the system ends up in, is larger (in the sense
of the partial order ≤m) than the initial state. Thus, this
“maximizing” input reprograms the system to the maximum
steady state, when large enough. Similarly, inputs of type
2 are “minimizing” inputs, and reprogram the system to the
minimum steady state. Inputs of type 3, on the other hand, are
“balancing” inputs. They result in a state that is “disordered”
(with respect to ≤m) compared to the initial state of the
system, and thus, might work to reprogram the system to
intermediate steady states. In the next section, we test these
results on the PU.1-GATA1 network.

V. APPLICATION OF RESULTS TO THE MOTIVATING
EXAMPLE

In this section, we return to the motivating example of
Section II. We apply the results of Section IV and discuss
strategies for reprogramming the system to the three different
steady states S0, S1 and S2.

We first note that the PU-GATA network satisfies the
graphical test for being a cooperative monotone dynamical
network: it is sign-stable, sign-symmetric, and for every
closed-loop (in this case none) in the interaction graph, the
number of edges with a “-” sign is even. We further note that,
since ∂f1

∂x2
, ∂f2∂x1

≤ 0, the system is cooperative with respect to
the cone Km where m = (0, 1). According to this cone, we
see that Lemma 3 holds for the set S = {S0, S1, S2} of the
stable steady states of the system. We have that min(S) = S1

and max(S) = S2, where min and max are defined with
respect to the partial order ≤m.

Under Theorem 1, an input of type 1 for this system,
which consists of either a positive stimulation on node 1 (X1)
or a negative stimulation on node 2 (X2) or both, cannot
strongly reprogram system (1) to any steady state besides

(A) (B)

(C) (D)

S1
S0

S2

S1 S0

S2

Large input of type 1 Large input of type 2

Large input of type 3: positive Large input of type 3: negative

x1 x1

x1x1

x2 x2

x2 x2
S1

S0

S2

S1
S0

S2

Fig. 2: Nullclines of the systems with different inputs. The new
steady states are denoted by the green star. (A) Large input of type
1: the resulting globally asymptotically stable steady state has very
low levels of x2 (GATA1) and very high levels of x1 (PU.1). The
inputs are u1 = 10nM/s of positive stimulation and u2 = 28s−1

of negative stimulation. (B) Large input of type 2: the resulting
globally asymptotically has very high levels of x2 and very low
levels of x1. The inputs are u1 = 28s−1 of negative stimulation and
u2 = 10nM/s of positive stimulation. (C) Large input of type 3: the
resulting globally asymptotically stable steady state has very high
(and comparable) levels of x2 and x1. The inputs are u1 = 10nM/s
and u2 = 10nM/s of positive stimulation. (D) Large input of type
3: the resulting globally asymptotically stable steady state has very
low levels of x2 and x1. The inputs are u1 = 28s−1 of negative
stimulation and u2 = 28s−1 of negative stimulation.

S2. This is because an input of type 1 causes x1 to increase
and/or x2 to decrease, and always results in a stable steady
state that lies in the region of attraction of S2. Thus, for any
input of type 1, there always exists some initial condition
such that the system is reprogrammed to S2. Thus, an input
of type 1 cannot strongly reprogram the system to any steady
state besides S2. Similarly, under Theorem 2, an input of
type 2, with either a negative stimulation on X1, a positive
stimulation on X2, or both, cannot strongly reprogram system
(1) to any steady state besides S1.

Under Theorem 3, a sufficiently large input of type
1 makes system (1) strongly reprogrammable to S2, and
a sufficiently large input of type 2 makes it strongly re-
programmable to S1. We use nullcline analysis to validate
that this is indeed the case. We would like to note here
that nullcline analysis is parameter dependent and any result
obtained with the nullclines is specific to the parameter set
used. The results that we have obtained in Section IV are
parameter independent and therefore general as they rely
only on the graph structure of the system. In Fig. 2A, we
show the nullclines for the system with a large input of type
1, and show that there is one globally asymptotically stable
steady state. Trajectories starting from any initial condition
converge to this steady state. Since this steady state has a
very high x1 and a very low x2, it is in the region of attraction
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of S2 (compare to Fig. 1B). The removal of this input would
the cause the system’s trajectory to converge to S2. Similarly,
a large input of type 2 results in the nullclines shown in
Fig. 2B. The resulting system has a globally asymptotically
stable steady state in the region of attraction of S1, making
the system strongly reprogrammable to S1.

Finally, we look into reprogramming the system to the
intermediate steady state S0. By Theorems 1 and 2, inputs
of type 1 and 2 cannot strongly reprogram the system to
S0. Further, while under Theorem 4, it could be possible to
weakly reprogram the system from S1 to S0 for a specific
range of inputs of type 1, and from S2 to S0 for a specific
range of inputs of type 2, such ranges, if they do exist, would
be dependent on the parameters of the system.

Therefore, instead, we investigate strong reprogramma-
bility to S0 using inputs of type 3. There are two possibilities
for an input of type 3: either a positive stimulation on
both nodes, or a negative stimulation on both nodes. We
apply large inputs of type 3 to the system, and the resulting
nullclines are shown in Fig. 2C (with both nodes receiv-
ing positive stimulation) and in Fig. 2D (with both nodes
receiving negative stimulation). Large positive stimulation
results in a globally asymptotically stable steady state with
x1 and x2 both large (and comparable). This steady state is in
the region of attraction of S0 (compare to Fig. 1B), making
the system strongly reprogrammable to S0. However, if the
difference between u1 and u2 were large (or the system were
not symmetric), this input might still result in a steady state
in the region of attraction of S1 or S2. On the other hand,
a large negative input on both, even if the two inputs were
different, results in a steady state near (0,0) as long as both
inputs are large enough. This steady state is in the region
of attraction of S0 (compare to Fig. 1B), making the system
strongly reprogrammable to S0. Thus, we see that both inputs
of type 3 can make the system strongly reprogrammable to
S0.

VI. CONCLUSIONS AND DISCUSSION

In this work, we have shown that inputs of type 1
can strongly reprogram a cooperative monotone dynamical
system to a steady state if and only if that steady state is the
maximal steady state. Similarly, we showed that inputs of
type 2 can achieve strong reprogrammability if and only if
the desired steady state is the minimal steady state. Since
strong reprogrammability implies that the system’s state
converges to the desired steady state independent of initial
conditions, in practice, this can be interpreted to mean that
a population of cells (each at a different state in the state-
space) could be given the same input, and reprogrammed to
the desired state (cell type). Further, we showed that there
may or may not exist a range of inputs of type 1 (or type
2) that can weakly reprogram the system from S to S̄ (or
S̄ to S) if S <m S̄ and S̄ 6= max(S) (S 6= min(S)). For
the PU.1/GATA1 system, we therefore considered inputs of
type 3, which were successful in strongly reprogramming the
system to its intermediate steady state S0.

We would like to point to the core network respon-
sible for pluripotency and the self-renewal of embryonic
stem cells [10]. This network is cooperative and can be
tristable, with the intermediate steady state corresponding
to the pluripotent state [17]. The most common strategy
used for reprogramming this system to pluripotency is the
over-expression of key factors [5]- an input of type 1. As
discussed here, such a strategy is fragile. If a range of type
1 inputs does exist that can (weakly) reprogram the system to
pluripotency, it would be parameter-dependent, and possibly
hard to achieve experimentally. This could be contributing
to the low efficiency of current reprogramming strategies.
Based on our work here, we recommend looking at inputs
of type 3 to reprogram this system to pluripotency, which
we leave for future work.

Like the pluripotency network and the PU.1/GATA1
network, many GRNs controlling cell-fate decisions are
monotone (or decomposable into an interconnection of
monotone systems) [15], [16]. This work therefore provides
a parameter-independent strategy to select inputs that could
achieve more efficient cellular reprogramming in cooperative
monotone systems.
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