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Abstract. Epigenetic cell memory allows distinct gene expression patterns to persist in different
cell types despite a common genotype. Although different patterns can be maintained by the
concerted action of transcription factors (TFs), it was proposed that long-term persistence hinges
on chromatin state. Here, we study how the dynamics of chromatin state affect memory, and focus
on a biologically motivated circuit motif, among histones and DNA modifications, that mediates
the action of TFs on gene expression. Memory arises from time-scale separation among three
circuit’s constituent processes: basal erasure, auto and cross-catalysis, and recruited erasure of
modifications. When the two latter processes are sufficiently faster than the former, the circuit
exhibits bistability and hysteresis, allowing active and repressed gene states to coexist and persist
after TF stimulus removal. The duration of memory is stochastic with a mean value that increases
as time-scale separation increases, but more so for the repressed state. This asymmetry stems from
the cross-catalysis between repressive histone modifications and DNA methylation and is enhanced
by the relatively slower decay rate of the latter. Nevertheless, TF-mediated positive autoregulation
can rebalance this asymmetry and even confers robustness of active states to repressive stimuli.
More generally, by wiring positively autoregulated chromatin modification circuits under time scale
separation, long-term distinct gene expression patterns arise, which are also robust to failure in the
regulatory links.

Author summary. Epigenetic cell memory ensures that cells are locked into specialized func-
tions for the life-time of an organism. Phenotype loss is often associated with disease, such as
cancer, and also required for artificially reprogramming cells from one type to another. Chromatin
state, determined by histone modifications and DNA methylation, has recently appeared as a key
mediator of epigenetic cell memory. However, a mechanistic understanding of how the dynamics
of chromatin state affect the temporal duration of this memory is lacking. Here, we developed and
analyzed a theoretical framework that includes these dynamics in gene regulation. Our results show
that when both recruited erasure and auto/cross-catalysis among histone modifications and DNA
methylation are sufficiently slower than basal erasure of all modifications, loss of cell memory will
occur. Our mathematical formulas show how the parameters capturing these time scales depend
on the abundance of methyl-DNA-binding proteins, on writers, erasers, and readers of nucleosome
modifications, and on cell division time. With this information, one may design experimental
interventions to either enforce phenotypic plasticity or re-lock phenotypes in aberrant cells.



1 Introduction

The maintenance of distinct cell identities without any difference in genotype is a critical property
of multicellular organisms. This property is captured by the word “epigenetic”, coined by Con-
rad H. Waddington in 1942, to broadly indicate that different cell phenotypes can be associated
with the same genotype [1]. A natural question is how multicellular organisms can ensure that
distinct phenotypes are safely locked-in despite sharing the same genotype. This question has been
extensively investigated in systems biology [2, 3] and has been recently revisited in light of the
so-called “Epigenetic Revolution” [4]. Maintenance of distinct phenotypes requires the inheritance
of different gene expression patterns through subsequent cell divisions [5]. During the natural pro-
cess of cell differentiation, cells go through multiple fate decisions and select among different gene
expression patterns that are mutually exclusive and are robust to both intrinsic noise and TF per-
turbations [6]. According to classical theory, these patterns are all stable attractors of the dynamics
of gene regulation networks (GRNs) enabled by TF binding to DNA. In each of these attractors,
lineage-specific genes become continuously expressed and often maintain their expression through
positive autoregulation [7, 8, 9]. Therefore, the GRN-centric perspective proposes that TF-enabled
regulatory networks are fully capable of maintaining epigenetic memory of cell-type-specific gene
expression patterns in differentiated cells.

Following an explosive number of discoveries fueling the Epigenetic Revolution, a different and
somewhat contrasting view has emerged on epigenetic cell memory [4]. A key argument that
detracts to the role of TF-enabled regulatory networks in maintaining memory states is that main-
tenance is dictated by the binding of TFs to DNA. But, this binding is disrupted upon DNA
replication and cell division. Allis specifically says “This mechanism is transient in dividing cells
because progression of the DNA replication fork usually disrupts these protein-DNA interactions,
which then need to be re-established in the resulting daughter cells.” ([10], Chapter 22). In [11],
the authors also argue that “ ...feedback loops can clearly enable heritable states of altered gene
expression without any need to evoke chromatin. However, it is unlikely that such feedback loops
alone would enable the propagation of states throughout the length of development and in the
germline of complex organisms.”

It has therefore been proposed that it is the chromatin state, i.e., the extent of DNA compaction
mediated by histone and DNA modifications, that enables long-term transmission to successive
cell generations ([11] and [10], Chapter 3). This view is supported by the discovery of enzymatic
processes that can copy histone modifications from modified histones to unmodified nearby his-
tones, facilitating the maintenance of these modifications after DNA replication and cell division
[10, 12]. It is also reinforced by the already established fact that DNA methylation is copied from
the parental DNA strand to the progeny strand immediately after DNA replication [13, 14] and by
the discovery of cooperative interactions between DNA methylation and histone modifications [15].
However, histone and DNA modifications result from dynamic enzymatic processes that continu-
ously write and erase modifications and not from a static read-and-copy process. It thus remains
unclear how these dynamic processes may enable long-term maintenance of gene expression states.
These considerations motivate the need for a theoretical framework that includes the dynamics of
chromatin state in the regulation of gene expression by TFs and determines how these dynamics
affect the temporal duration of memory. This question is even more pressing for engineering persis-
tent synthetic genetic circuits in the chromosome of mammalian cells, in which silencing is a major
obstacle to keeping proper circuit function for extended temporal durations [16, 17, 18, 19].

In this paper, we create a biologically motivated chemical reaction model of the gene’s inner chro-
matin modification circuit that mediates the effect of TF inputs on gene expression through histone
modifications and DNA methylation. The circuit comprises auto-catalysis of histone modifications,



competitive recruitment of erasure between activating and repressive modifications, cross-catalysis
between repressive histone modifications and DNA methylation, and basal erasure.

In this model, the effect of TFs on gene expression is not determined by the binding of TFs
to DNA alone, but by the recruitment of the enzymes for the de novo establishment of either
activating or repressive modifications. We first determine how time scale separation among the
circuit’s constituent processes affect memory of a TF input stimulus for both active and repressed
chromatin states, by analyzing the stability and probability of chromatin states, the mean temporal
duration of a chromatin state, and the variability of this duration (Section 3.1). Then, we study
the relative contributions of TF-mediated regulation and chromatin dynamics to memory of active
and repressed gene states in two ubiquitous GRN motifs: TF-mediated positive autoregulation and
mutual inhibition (Sections 2.2-3.3). Specifically, we analyze the mean temporal duration of active
and repressed chromatin states and their robustness to both repetitive disruptions of TF-enabled
regulatory links and to undesired input stimuli, such as due to endogenous silencing.

Related work. Models of chromatin-mediated gene regulation, in which histone modifications,
DNA methylation, and TF-mediated regulation are combined together, remain under-represented in
the literature [20]. Most existing models that include chromatin modifications into gene expression
regulation are based on phenomenological rules rather than on the molecular reactions that regulate
chromatin state, and focus on specific biological processes, such as iPSC reprogramming [21, 22, 23,
24] or epithelial-mesenchymal transition [25], and most of them are only suitable for computational
simulations [21, 22, 23]. On the opposite side of the spectrum, highly detailed mechanistic models
have appeared for histone modifications alone, in which each nucleosome within a gene is modeled
and simulated as a distinct unit [26]. Different from these existing works, we explicitly address
how the duration of memory of a chromatin state is modulated by the topological properties of the
chromatin modification circuit, by relevant biochemical parameters, and by the interplay between
TF-based regulation and chromatin dynamics.

2 Models

2.1 Model of the gene’s inner chromatin modification circuit

In this paper, we focus on a circuit motif that captures the interactions among H3K4 methyla-
tion/acetylation, H3K9 methylation, and DNA methylation, and has the nucleosome as the basic
unit that can carry these modifications (Figure 1(a)). H3K4 methylation (H3K4me3) typically
co-exists with acetylation and is associated with active chromatin state ([10], Chapter 3 and [27]),
while H3K9 methylation (H3K9me2/3) and DNA methylation are a hallmark of repressed chro-
matin state and, as such, are found at pluripotency genes and at lineage specific genes in terminally
differentiated cells [5]. Specifically, H3K4 and H3K9 methylation are typically mutually exclusive
since the enzymes that methylate H3K4 do not do so if the neighboring K9 residues are already
methylated [28] and viceversa [29]. We therefore assume that each nucleosome carries either H3K9
methylation or H3K4 methylation but not both. We also assume that H3K4 methylation and
acetylation co-exist and we represent them by an activating “A” nucleosome modification (Figure
1(a)). Furthermore, for H3K9 methylation, we lump together the two methylation states (me2 and
me3) for simplicity and call them “me3” because both of them are associated with gene repression.
Also, although nucleosomes carry two copies of each histone, we consider them as one unit that
can carry only one histone modification.

In addition to these histone modifications, DNA itself can be methylated in correspondence to the
CpG dinucleotide (CpGme) [30, 10, 5]. DNA methylation is correlated with the absence of H3K4
methylation ([10], Chapter 6), since the enzymes that methylate H3K4 recognize unmethylated



DNA binding motifs ([10], Chapter 1) and wviceversa ([10], Chapter 6, and [31]). Therefore, we
assume that each nucleosome can carry either one or the other but not both (Figure 1(a)). By
contrast, DNA methylation can co-exist with H3K9 methylation ([10], Chapters 6, 22) and hence
we allow a nucleosome to carry both modifications (Figure 1(a)). As a result, each gene will include
a number of nucleosomes with different modifications (Figure 1(b)).

In the next section, we introduce the molecular mechanisms and corresponding reactions by which
these modifications can be written, erased, and copied to nearby nucleosomes, which will form the
chromatin modification circuit (Figure 1(c)-(d)).

2.1.1 Histone modifications

Histone modifications can be modeled by enzymatic reactions wherein an unmodified histone can
be de novo modified by the action of writer enzymes. These enzymes are called KMTs (lysine
methyltransferases) for methylation and HAT's (histone acetyltransferases) for acetylation and are
recruited to DNA by, among others, sequence-specific TFs ([32], Chapter 6). These modifications
can be actively removed by the action of eraser enzymes. These enzymes are called HDMTs
(histone demethylases) for de-methylation and HDACs (histone deacetylases) for de-acetylation.
Additionally, histone modifications can be copied through a read-write process, wherein a modified
histone is bound by a reader protein, which, in turn, recruits writers of the same modification [10].
We describe these in detail.

De novo establishment. As described in [10] (Chapter 21), sequence-specific transcriptional
activators bind DNA and recruit HATSs, such as the SAGA complex, to the promoter of a gene,
which becomes acetylated. Examples of transcriptional activators that recruit HATs include Myec,
GATA.1, and Gal4. The deposition of H3K4me3 then can occur co-transcriptionally as RNA
Polymerase II recruits SETs, a KMT that methylates H3K4 [33] (see also [10] Chapter 3), or
through the recruitment of SETs and MLL1/2 (also KMTs for H3K4) to DNA by the CxxC
binding domain that specifically recognizes unmethylated DNA ([5], Chapter 7). Finally, MLLs
can be recruited to specific promoters by transcriptional activators such as Oct4 [34]. H3K9me3
is established by the writer action of Suv39H1 (a KMT for H3K9), which can also be recruited to
DNA by sequence-specific TFs. An example of this is the recruitment of this enzyme to GATA.1
targets by the PU.1 TF, as a means to silence GATA.1 targets and promote the myeloid lineage
[35]. These modifications can be captured by the one-step enzymatic reactions (0), (1), (2) and (3) in
Figure 2. In the sequel, we will consider the ky parameters as inputs to the chromatin modification
circuit since they can be modulated by TFs external to the circuit (see SI-equations (S.82),(S.83)).

Auto-catalysis. Histone modifications can recruit more alike modifications to nearby unmodi-
fied histones through a read-write mechanism. Specifically, protein readers bind the modification
and recruit writers of the same modification to nearby unmodified histones ([10], Chapter 22 and
[36, 37, 27, 38]). For example, protein HPla contains a chromodomain that specifically recognizes
H3K9me3 and recruits the Suv39H1 methyltransferase responsible for H3K9 methylation [36]. Sim-
ilarly, WDRS5 is a protein reader that recognizes specifically H3K4me3 and binds to SETs to recruit
them for H3K4 methylation [27]. Similarly, for histone acetylation, the p300/CBP complex is a
HAT that also has a bromodomain, so it is a reader and a writer at the same time ([10], Chapters
4, 21 and [5], Chapter 2). We capture this auto-catalytic process by reactions (4) for activating
histone modifications and by reactions (5) for repressive histone modifications in Figure 2.

Recruited and basal erasure. An activating (repressing) histone modification can recruit
erasers for a repressing (activating) histone modification [39]. For example, JMJD2A is an eraser
for H3K9me3/2 and de-methylates H3K9me3/2 through its Jumonji domain while being able to
bind H3K4me3 through the Tudor domain. Therefore, H3K4me3 helps recruit this H3K9me3 eraser



to DNA. In turn, JARID is an eraser of H3K4me3 and does so through one of its PHD domains.
Through a different PHD domain, it binds H3K9me3. Therefore, H3K9me3 helps recruit this
H3K4me3 eraser to DNA. Furthermore, the CHD4 subunit of the NuRD (nucleosome remodeling
and de-acetylase) complex contains a domain (a PHD domain) that recognizes H3K9me3. This
provides a mechanism through which H3K9me3 recruits HDACs. The corresponding reactions are
number (8) and (9) in Figure 2. Furthermore, in addition to recruited erasure, histone modifications
are subject to basal erasure, wherein a modification can be removed passively through dilution due
to DNA replication during S phase or through non-specific de-methylation ([10], Chapter 22). Basal
erasure is captured by reactions (6) and (7) in Figure 2. The resulting circuit diagram is shown in
Figure 1(c), wherein each modification auto-catalyzes itself and inhibits the other one.

2.1.2 DNA methylation and crosstalk with histone modifications

Similar to histone modifications, DNA methylation can be captured by enzymatic reactions. Specif-
ically, de novo establishment of CpG methylation is mediated by the DNMT3 enzyme (reactions
and @ in Figure 2) and copy-write occurs through the DNMT1 enzyme, which quickly copies
the methylation pattern on the nascent DNA strand at replication. De-methylation occurs pas-
sively through dilution due to DNA replication and by an active de-methylation mediated by TET
enzymes ([10], Chapter 15). In particular, TET enzymes recognize CpGme dinucleotides and have
catalytic activity to convert methylated CpG to hydroxilmethylated CpG, then to formylcytosine,
and finally to carbolxylcytosine [40, 41]. None of these modified forms are recognized by DNMT1
and therefore they are subject to dilution via DNA replication ([5] Chapter 17). The ability of
TET enzymes to convert methylated CpG to hydorxilmethylated CpG in vivo is hampered by the
binding of MBD proteins to methylated CpG [42]. Reversely, MBD proteins cannot bind hydrox-
ylmethylated DNA [41]. The combination of these processes can be captured by a basal erasure

reaction (reaction @ in Figure 2), where the expressions of the decay rate constants ¢’ and k"T
are derived in SI-Section S1.1.3, Sl-equations (S.33),(S.62). Specifically, we have that §' = dn, in
which ¢ is the dilution rate constant, n = 0 if the efficiency of the maintenance process by DNMT1
is 100%, and n = 1 if DNMT1 is absent, consistent with earlier models [43]. Similarly, we have
that k:’T = k77, in which k7 is a constant proportional to the level of TET enzyme, 77 = 0 if MBD
proteins are highly abundant, and 7 = 1 if MBD proteins are absent.

Recruited erasure between activating histone modifications and DNA methylation.
DNA methylation and H3K4 methylation/acetylation have mechanisms to recruit erasers of each
other. Specifically, methylated CpGs recruit MeCP2 proteins, which associate with HDACs to
establish de-acetylation ([10], Chapter 15 and [44, 45, 46]). Similarly, methylated CpGs recruit
MBD2, which interacts with the NuRD complex to also promote de-acetylation ([44], [10], Chapter
21). These processes are captured by reaction @ in Figure 2. On the other hand, TET1 enzyme
has high propensity to bind to unmethylated CpGs through the CXXC domain ([5], Chapter 17 and
[41]). This suggests a potential mechanism by which methylated H3K4 recruits TET1 to nearby
methylated CpGs, enhancing their de-methylation. This is captured by reaction in Figure 2, in
which the reaction constant ké,i‘ has the same trend as kép with the abundance of MBD (SI-equation
(S.76)). A diagram representing the mutual inhibition between activating histone modifications
and DNA methylation is shown in SI-Figure S.2.

Cross-catalysis between repressive chromatin modifications. DNA methylation and
H3K9 methylation reinforce each other. Specificallyy, MBD proteins recognize methylated CpG
dinucleotides and recruit both histone modifying complexes to the methylated sites. MBD1, in par-
ticular, binds to methylated CpG sites and recruits histone methyltransferases for H3K9, SETDB1



and Suv39H1, which bring H3K9me3 about [44]. Similarly, MeCP2 binds methylated CpGs and
recruits histone methylases that lead to H3K9me3 [47]. We capture the process by which DNA
methylation recruits H3K9 methyltransferases by reactions @ in Figure 2. On the other hand,
DNMTS3 binds to HP1 protein (reader of H3K9me3), suggesting that H3K9me3 recruits DNA
methylation enzymes through HP1 [48]. This is captured by reactions in Figure 2. A diagram
representing these synergistic interactions is shown in SI-Figure S.3. These interactions create
positive feedback loops, wherein each modification enhances the creation of the other.

By combining the competitive interactions between activating and repressive modifications (Fig-
ure 1(c) and SI-Figure S.2), with the cross-catalysis among repressive modifications (SI-Figure S.3),
we obtain the full chromatin modification circuit of Figure 1(d), whose corresponding reactions are
listed in Figure 2. SI-Sections S1.1.1 - S1.1.7 contain the derivation of the models and of reac-
tion constants. The expressions of reaction constants are function of the level of eraser enzymes,
writer enzymes, methyl-DNA binding proteins, and of cell division rate. Figure 2 summarizes these
dependencies in a qualitative way. SI-Section S1.1.8 contains the list of assumptions that were
made to write these reactions. In particular, in this model we do not include spatial regulation for
simplicity, assuming that the higher-order structure of chromatin allows any modified nucleosome
to act on any other nucleosome within the gene, as in previous work [26]. Even if the model does
not include spatial regulation, it still includes “beyond-neighbor” interactions that play a role in
bistability [26].

2.2 Model of transcriptional regulation by chromatin state

Chromatin state affects transcription by modulating nucleosome compaction. DNA wrapped around
highly compacted nucleosomes is difficult to access by TFs and therefore genes in such DNA regions
are not transcribed. By contrast, DNA wrapped around less compacted nucleosomes is more likely
to be accessible by TF's, and hence is susceptible to transcription. Repressive histone modifications
and DNA methylation generally lead to increased compaction while activating histone modifications
keep a more open chromatin structure ([10], Chapter 3).

We therefore assume that transcription is allowed only by D?, but not by D or any of DR},
DR, and Dllg. In principle, nucleosome state D may allow some low basal transcription, through
non-specific targeting by chromatin remodelers ([49],[32]), but we assume this is sufficiently low
to be negligible. A more general model could include this basal rate, accounting for the fact that
transcription by RNA Pol I of D occurs concurrently with the deposition of H3K4me3 and hence
with the conversion of D to DA [33]. Thus, by lumping together transcription and translation, we
obtain the following gene expression model (SI-Section S1.4):

DA 22, DA 1 X, X 25 0, (1)

in which X is the gene product, ~, is the decay rate constant of X and o, = F'(A, R) is an increasing
function of the concentration of TF activators A and a decreasing function of the concentration of
TF repressors R. Here, for simplicity, we assume that a, is a constant. The main conclusions of
this paper are not affected by this assumption.

3 Results

We analyze both the deterministic and stochastic behavior of the chromatin modification circuit
model, focusing on the question of temporal duration of memory of transient input stimuli. There-
fore, we regard this circuit as a dynamical system that takes k‘{/l‘/ and k:{}/, modulated by the binding



of sequence-specific TFs to DNA, as inputs and gives as output the chromatin state, captured by
the number of modified nucleosomes D*, D}, D, and DR, within the gene (Figure 3(a)-(b)).

We then consider two applications: TF-enabled positive autoregulation for robustness of the
active gene state to undesirable repressive input stimuli, such as due to endogenous silencing,
and mutually repressing positively autoregulated chromatin modification circuits for long-term
persistence of multiple distinct gene expression patterns.

3.1 Time scale separation among constituent processes control bistability, hys-
teresis, and time to memory loss

We first analyze the ordinary differential equation (ODE) model of the chromatin modification
circuit, focusing on how parameters affect bistability and hysteresis. Bistability is the co-existence
of two stable steady states, specifically active and repressed chromatin states, in the absence of
an input stimulus. Hysteresis occurs when the output of the system follows two different paths
depending on whether the input is increased or decreased. In particular, the output remains in the
proximity of the value reached for high input when this is removed that is, the system “remembers”
a transient input stimulus. We then consider a stochastic model to address the question of temporal
duration of this memory, given that noise intrinsic to molecular reactions can always displace the
system’s state.

For our analysis, we let n4, nit, nf nit and n? denote the number of nucleosomes with activating
(DA), repressive (D}, D}, and D), and no modifications (D), respectively, within a gene composed
of a total of Dyot nucleosomes. All analyses are performed considering the unitless normalized
time 7 = tkﬁDtot with Dyt = Diot/Q and Q the reaction volume. We define the following
non-dimensional parameters, capturing the characteristic time scales of the circuit’s constituent
processes:

!

Ckm . km o ky S+ kp kR KRk

Q= A=, = e, €= e € = L = o, L = .
kd ka Kk k% Dot ka k4 k4

(2)

Here, « is the non-dimensional auto-catalysis rate parameter, while &, and o’ are the non-dimensional
cross-catalysis rate parameters, which we assume on the same order without loss of general-
ity. We further let (§ + kf)/(6 + k) = bu with b = O(1), implying that p scales the ratio
between the erasure rates of repressive and activating histone modifications. We similarly let
(6" + k) /(0 + k) = By’ with B = O(1), implying that y' scales the ratio between the erasure
rates of DNA methylation and those of activating histone modifications. From these relationships,
it also follows that (6 + k&)/(k{ Diot) = bep and that (8" + ki) / (ki Diot) = Bep'. Therefore, the
parameter € scales the ratio between the basal rate at which all modifications are erased and the
rate at which they are auto or cross-catalyzed. Finally, since k% /k4, = ue’ and k¥ /ki, = p'e,
it follows that ¢ scales the ratio between the rate at which modifications are removed through
mutual recruitment of erasers and that at which they are auto or cross-catalyzed. These parameter
definitions are pictorially conveyed in Figure 3(a).

Putting these definitions together, in our model, € and ¢ are non-dimensional parameters that
quantify the time scales of basal and recruited erasure rates of all modifications relative to those of
auto and cross-catalysis. Similarly, u and p/ are non-dimensional parameters that quantify the time
scales of erasure rates (basal and recruited) of repressive histone modifications and DNA methy-
lation, respectively, relative to those of activating histone modifications. Since these normalized
parameters are functions of the biochemical reaction rate constants (equation (2)) and, in turn,
the reaction rate constants are known functions of the level of writer and eraser enzymes, TET



enzymes, and MBD proteins (see Figure 2 and SI-Section S1.1.6), it is possible to experimentally
vary these parameters by over-expressing, inhibiting, or by recruiting these molecular players.

Deterministic behavior. We first analyze the ordinary differential equation (ODE) model of
the chromatin modification circuit, focusing on how the above parameters affect dynamics. To this
end, we assume that the number of total modifiable units Dy is sufficiently large such that the
variables n?, nft, n¥, nf, and n? can be considered real-valued and thus their temporal evolution
can be described by ODEs. In particular, we describe the system in terms of fractions of modifiable
units, that is D4 = n4 /Do, DF = nft/Diot, DF = nl /Dy, DE = nfl /Dioy and D = nP /Dy
We further introduce the normalized inputs @4 = uf' + u? with ug' = /f{f‘vo / (kﬁDtot) and u? =
kﬁ//(kzﬁDtot), all = u{%o + uft with u{%o = kll/vo/k?f/[Dtot and uft = kll,v/(k:f/[DtOt), ull = ugo + ul?
with ufy = k&,/ (ki Diot) and ull = k%, /(k4; Diot). With these definitions and letting & := dx/dr,
the ODEs describing the system in non-dimensional variables are given by
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DF = (aff + o (DF + D)) D + pu(be + € DYDE, — (ubl) + (D + DE) + a(DF + D)) DE
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in which D = 1— D~ DIt — DE — D4 and the circled numbers indicate the corresponding reactions
from Figure 2 (see SI-Section S1.1.6 and SI-equations (S.80) for derivation).

In the absence of inputs (u? = uff = uff = 0), system (3) has a unique stable steady state, if
e is not sufficiently small. This steady state has D > DA for small y/. When e is sufficiently
small, the system is bistable, with both active (D4 ~ 1) and repressed (D ~ 1) co-existing stable
chromatin states. But when g’ is very small, even for small €, the system returns monostable
with a unique stable steady state corresponding to the repressed state (Figure 3(c)-(d) and SI-
Figure S.11). Furthermore, as ' increases (DNA methylation erasure rate increases), the system
approximates well the histone modification system (Figure 1(c)), wherein DNA methylation is not

present. This is because when // is sufficiently large, the DNA methylation is erased very quickly



and then D¥ = DI + DE + DE ~ DL, As a consequence, when ¢ is sufficiently small the system
is bistable for intermediate values of ;, monostable with D4 ~ 1 when y is large and monostable
with D ~ 1 when p is small (SI-Figure S.4). Varying € does not change these trends, except for
€/ < ¢, in which case the system returns monostable (SI-Figure S.11).

Figure 3(e) shows the input/output steady state characteristics of the chromatin modification
circuit. Specifically, as u? is increased starting from D4 = 0, the state switches to DA ~ 1 for u*
above a critical value, which increases as e decreases. When v is decreased back to zero, the path
that D follows is different and it can keep D4 ~ 1 even when u? = 0 if € is sufficiently small.
In this case, we say that the state transition becomes irreversible and the system keeps memory of
its input stimulus. From a biological point of view, this implies that an activating transient input
stimulus allows to permanently re-activate a silenced gene. This memory vanishes as € increases.
When ,u/ decreases, the value of u required to flip the system’s state to fully active increases until
we reach a regime under which the memory is lost (SI-Figure S.13). A similar behavior is observed
for the relationship between the repressing input uf (with uf* = ul* = u®) and D® ( SI-Figure
S.14). Biologically, this implies that a repressive transient input stimulus can permanently silence
an initially active gene. However, as opposed to the (uA, D4) characteristics, if we reduce 1, the
minimum value of u? required to silence the system (DF ~ 1, DA ~ 0) decreases (Figure 3(f),
SI-Figure S.14). This also shows that as ,u/ is decreased, the active state becomes less robust to
repressive input stimuli.

A comparison of the plots of SI-Figure S.13 and SI-Figure S.14 for small € and px = 1 reveals that,
even when g/ = 1, it takes smaller values of u® to switch the state to D = 1 than the values of
u? required to switch the state to D4 = 1. This fact highlights that it is the structure itself of the
chromatin modification circuit, rather than the rate constants alone, to “bias” the system towards
a repressed chromatin state. In fact, the two-layer topology of the repressive modifications confers
increased robustness to the repressed state with respect to activating stimuli &%}, (Figure 3(a)). This
is in contrast to what is observed for the system that does not include DNA methylation (Figure
1(c)), wherein once all parameters are equal to each other, the stability landscape is symmetric
(SI-Section S1.2.1). Varying € does not significantly affect these trends (SI-Figures S.13-S.14),
unless € < ¢, in which case hysteresis is lost (Figure 3(g)).

In summary, when recruited erasure (¢ ) and auto-catalysis/cross-catalysis (o, @, ) are suffi-
ciently faster than basal erasure (e), the circuit displays bistability and hysteresis, except if u
and/or y' are sufficiently small. In this case, the unique stable state is the fully repressed chro-
matin state, independent of all other parameters.

Stochastic behavior. We next evaluate how the stationary distribution of the chromatin state,
the time to memory loss, and the ability to reactivate a repressed gene depend on e, e/, p and
;/, and on the inputs u” and w*. To this end, we first perform a computational study by using
Gillespie’s Stochastic Simulation Algorithm (SSA) [50]. We then complement this with a mathe-
matical derivation of the approximate expressions of both the stationary distribution and the time
to memory loss as a function of the parameters and input stimuli.

Figure 4(a)-(b) shows how the stationary distribution is shaped by € and y’ (a) and by inputs
uf and u? (b). Specifically, € has a most critical role. As it decreases, with all other parameters
remaining fixed, the peaks of the distribution become more concentrated about the fully repressed
and fully active chromatin states. Highly concentrated peaks imply that the probability of finding
the chromatin state outside of these configurations is very small. This property is connected to
the time to memory loss, defined as the expected value of the earliest time the chromatin state
reaches the active state starting from the repressed state and viceversa. In fact, as € is decreased,
the chromatin state starting in either the repressed or active state takes longer, on average, to
reach the active or repressed state for the first time, respectively (Figure 4(c)-(d)). In contrast to



what found for the histone modification model of Figure 1(c) (SI-Figure S.6(a)), decreasing e also
has an effect in increasing the height of the peak in correspondence of the repressed state to the
detriment of the peak corresponding to the active state (Figure 4(a)). When ' is decreased, this
bias increases, and the peak in correspondence of the repressed state becomes more concentrated
(Figure 4(a)). Varying u has a similar effect as varying ' (SI-Figure S.19). Inputs u* and u” each
increase the height of the peak corresponding to the repressed and active state, respectively (Figure
4(b)). Consistent with the deterministic analysis (SI-Figure S.13), for smaller 4, it is required a
larger u? to increase the probability of finding the state in the fully active chromatin state (SI-
Figure S.18(b)). By contrast, ¢ does not significantly affect the trends observed for €, i/, p and the
inputs, although it modulates some aspects of the distribution (SI-Section S1.3.5 and SI-Figures
S.17-S.20). Specifically, when ¢ decreases compared to €, the peaks of the distribution become less
concentrated and, in the extreme case where ¢ < ¢, the distribution becomes unimodal (Figure
4(e)).

In the regime where both ¢ < 1 and € < 1, in which the system displays a bimodal distribution
(SI-Figures S.17-S.20), we can analytically derive a one-dimensional Markov chain approximation
that allows analytical computation of the stationary distribution and of the time to memory loss as
functions of the parameters (SI-Sections S1.3.2-S1.3.4). Biophysically, in this regime, the reactions
represented by the label BE; in Figure 3(a) become slower compared to those represented by the
label C;. In particular, letting x = nf%, with = € [0, Dy, we have that, when e < 1, the stationary
probability distribution 7(x) can be approximated by

1jp ifxz=0
Te<1(z) = <0 if z # 0, Dtot , (4)
H—LP lf xr = Dtot
with
Pi(u +u12+a+a+a U12+(a+5‘+0‘/)nfot) ufl 5
T @ tah+ ) D) o a5 O )y ) plbpekpnat )
U12 i=1 MU € TK ('LL + W) L Dtot

in which @4 = ug' +u?, afy, = ufl) +ulf + ull +uf and K;, defined in Sl-equations (S.161),(S.171),
independent of €, u, ¢/ and € (see SI-Section S1.3.3 for the mathematical derivations). From this
expression, we conclude that if e < 1, 7(z) = 0 for all z except for © = Dy (fully repressed state)
and z = 0 (fully active state), implying that the probability of finding the system in one of the
intermediate states is about zero. This is in accordance with the computational results of Figure
4(a), which show higher concentration around the extreme states, and with Figure 4(c)-(d), which
show smaller likelihood of transitioning out of those extreme states as € is decreased. When € goes
to zero, P — oo, which implies that m(Dgot) ~ 1. This is consistent with the structural bias of
the chromatin modification circuit towards the repressed chromatin state (Figure 3(a)) and the
computational results of SI-Figure S.18(a). This bias is enhanced as ' is decreased since P — co
as pp' — 0, leading to m(Dyet) &~ 1. Furthermore, in agreement with what observed in Figure 4(b),
an increase of u” decreases P and hence increases 7(0). By contrast, an increase of u’* increases
P, which, in turn, increases (Dyot). Also, larger u“ values are required to increase the probability
of the active state to the same level when ' is smaller.

Similarly, the normalized time to memory loss of the repressed state can be approximated as

(SI-Section S1.3.4)
Diot—1 ;
_ Kg K,
R~ 7 1+ 7 7 ) (6)
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with A} an increasing function, h¢(0) = 0, and Kg and K}é functions independent of ¢, i and p,
while the normalized time to memory loss of the active state can be approximated as

Dtot— lhl MN
A~<1+ 5 ) @

=1

with hé an increasing function and hé (0) =0, and K4 and Kil functions independent of e, ,u/ and
. In the limiting condition where ¢ — 0, we have that both 7 — oo and 74 — oco. Therefore,
decreased € is the driver for increasing the extent of epigenetic memory of both the active and
repressed chromatin states. Furthermore, because of the structural asymmetry of the chromatin
modification circuit, the power of € is different in the two above expressions, indicating that de-
creased € increases the extent of memory much more for the repressed state than for the active
state. This is in contrast with what obtained for the histone modification circuit, in which both 7r
and 74 are O(1/e) (SI-equations (S.138) and (S.140)). Finally, decreased p and u' lead to larger
Tr but to lower 74. These trends are in agreement with the simulations in Figure 4(c)-(d). In par-
ticular, in each panel, we plotted a number of trajectories equal to 10 to provide a comprehensive
representation of the parameter effects on the trajectories and, at the same time, a clear reading
of the figure.

We next determine via simulation how the parameters €, 4/ and € affect the time to reactivation,
i.e., the time it takes to re-activate an initially repressed chromatin state by applying a sufficiently
large activating input stimulus u4 (Figure 4(f)). The time trajectories show a switch-like behavior,
which is more prominent for € < 1, 4/ < 1, and ¢ > 1 (SI-Figure S.23). Also, the latency, i.e.,
the time the trajectory takes to switch after an activating input is applied, is highly variable and
its variability is mostly dictated by small € and small p’, which, together, make gene reactivation
a low probability event. Furthermore, the time to reactivation decreases by increasing ,u' and /or
increasing €, consistent with results from the deterministic model (SI-Figure S.24).

Taken together, our results indicate that basal erasure rate sufficiently smaller than recruited
erasure rate (e sufficiently small and ¢ sufficiently larger than €) allows a bimodal distribution
such that both active and repressed chromatin states each have high probabilities compared to
intermediate states. As e decreases, this distribution is more concentrated about the fully active
and repressed states and the time to memory loss of either state increases. Even when there is no
asymmetry between activating and repressive modification erasure rates (u = 1 and g/ = 1), the
time to memory loss is larger for the repressed chromatin state. This asymmetry is accentuated by
p < 1.

Relationship with published data. In [51], the authors study the kinetics of silencing and
reactivation of chromatin modifications, including H3K9me3 and DNA methylation, at the single-
cell level. In particular, they show that silencing and reactivation has a all-or-none behavior. Our
model predicts that this all-or-none response is observed when the underlying chromatin modifica-
tion circuit has a bimodal stationary distribution, which we proved requires € < 1 and € sufficiently
larger than e (SI-Figures S.23). This suggests that in practice we should expect € < 1 and € not
too small. Furthermore, data on temporal dynamics of DNA de-methylation in vivo indicate that
p' < 1 (SI-Section S1.3.1). Early elegant experimental studies performed by [52] further show that
the latency of reactivation of a silenced gene is highly variable. In our model, a highly variable
latency of reactivation events is predicted under the parameter regime where both e and ,u,/ are
small (Figure 4(f) and SI-Figure S.23), suggesting that ;' < 1 may in fact be responsible for the
experimentally observed latency of reactivation [52]. Furthermore, in [52] it is shown that increased
proliferation rate leads to a faster reactivation kinetics. In our model, increased proliferation is cap-
tured by increased e and in fact higher € leads to faster kinetics of reactivation events (SI-Figure

11



S.25(a)-(c)), in agreement with the observations in [52].

Finally, a basic DNA methylation model that does not include MBD proteins cannot reflect the
low effective active erasure rates of DNA methylation through the action of TET enzymes, k7,
encountered in vivo (Sl-reactions S.45). In our model, the ability of TET enzymes to convert
methylated DNA to hydorxilmethylated DNA is hampered by the binding of MBD proteins to
methylated DNA (SI-Section S1.1.3). As a result, the effective active erasure rate constant, /c:f,
derived in Sl-equation (S.62), can be written as ki[ = k7 in which kr is a constant proportional
to the level of TET enzyme, where 77 = 0 if MBD proteins are highly abundant, and # = 1 if MBD
proteins are absent (SI-equation S.62). This implies that the parameter ,u/ = k/T* / ké is proportional
to the amount of TET enzymes and decreases with the amount of MBD proteins. Lower levels
of MBD proteins result in higher 1’ and in our model this leads to faster reactivation kinetics
and decreased variability of reactivation time (SI-Figure S.25(d)-(f)). This is consistent with the
experimental observations of [53], which show that knocking down of MBD proteins not only makes
the reprogramming process faster, with almost the entire cell population converted into iPS cells
within 7 days, but makes it also almost deterministic.

3.2 Positive TF-enabled autoregulation extends memory of active chromatin
state robustly to perturbations

The study of the chromatin modification circuit reported in the previous section shows that the
two-layer topology of the repressive modifications biases the system towards a repressed chromatin
state, and that this bias becomes even more pronounced for low values of ,u/. It follows that, when
the chromatin state is in the active configuration, without any activating input stimulus, even a
small perturbation can cause a quick silencing of the gene. For an engineered gene expression
system, this silencing will disrupt the intended engineered function of the cell line, as observed
in experiments with different cell types [16, 17, 18, 19]. Here, we study how TF-enabled positive
autoregulation can alleviate this problem by restoring memory of the active gene state and by
making it more robust to endogenous silencing. A possible form of positive autoregulation is when
the gene product X acts as a TF activator that recruits writers of activating histone modifications
to the gene. This is the case of many TFs involved in cell fate determination, such as Oct4 and
Nanog [54]. The analysis of this design thus not only provides a potential engineering solution to
the silencing problem of chromosomally integrated gene expression systems, but it also allows for
a different understanding of the role of positive autoregulation in natural networks.

In this case, the input k:fj‘v of the chromatin modification circuit is a monotonically increasing
function of nX (SI-Section S1.1.7). The positive autoregulation model is thus given by combining
the chromatin modification circuit reactions (Figure 2) with the gene expression reactions (1), and
the expression for kfj, (Sl-equation (S.82)). The corresponding interaction diagram is shown in
Figure 5(a), and Figure 5(b) shows the block diagram representation with input k{f and output
nX

Deterministic behavior. Considering again the normalized time 7 = tkﬁDtot, and letting
X :=n%X /Diot, with n the number of molecules of X, &, = az/(kﬁDtot), and 7, = %/(kﬁDtOt),
& := dx/dt, the ODE associated with gene expression in non-dimensional variables can be written
as _

X =a,D* -7, X. (8)
By assuming molecular counts sufficiently high to use ODEs and by combining the ODEs of the
chromatin modification circuit (3) with those of gene expression (8), we obtain the ODE model of
the positive autoregulation system (SI-equations (S.183)). We first realize bifurcation plots with
Pz = Qg /7, the bifurcation parameter (SI-Figure S.26). As p, increases, the system transitions
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from monostable with one stable equilibrium point corresponding to the fully repressed chromatin
state to bistable in which also a fully active chromatin state is a stable equilibrium. For lower
values of ,u,, higher values of p, are required to make the fully active state appear as a stable
equilibrium. Therefore, increased p, can compensate, to some extent, for the asymmetry of the
system, thus restoring stability of the active state. Varying u has a similar effect as varying p’. In
order to gain a qualitative understanding of the way positive autoregulation affects the stability of
the system, we also conducted a mathematical analysis assuming that protein dynamics are much
faster than chromatin modification dynamics. This analysis shows that positive autoregulation
has an effect equivalent to increasing the auto-catalysis rate of the activating histone modification.
Based on the bifurcation plots realized for the chromatin modification circuit (SI-Figure S.11), a
higher auto-catalysis rate constant kﬁ can restore the active state stability, consistent with the
results in SI-Figure S.26.

The strength of positive autoregulation p, also affects the robustness of the active gene state’s
memory to endogenous silencing. Specifically, we introduce in our model possible perturbations
that can lead to silencing, due to for example chromatin spreading from surrounding gene loci, by
considering uf, uf > 0. The input/output steady state characteristics (uff, D?) with uf = uff =

R shows persistence of the active state to increasing values of u® as p, is increased (Figure 5(c)).
These results imply enhanced robustness of the active state to repressive input perturbations.

Stochastic behavior. Here, we determine how positive autoregulation modulates the stationary
probability distribution of the chromatin state and the time to memory loss of the active state.
To this end, we first perform a computational study by simulating the full set of reactions (SI-
Table 5) with the SSA [50]. This study shows that, increasing p,, the peak in correspondence to
the active state becomes more concentrated and its height increases to the detriment of the peak
corresponding to the repressed state (Figure 5(d)). However, for lower values of 1, the height of
the peak in correspondence to the active state is also lower, implying that a higher value of p, is
required to increase the peak to the same level (SI-Figure S.28). Reducing i has a similar effect as
reducing (SI-Figure S.28). These results are in agreement with the temporal trajectories of n
(Figure 5(e)), which indicate that the time to memory loss of the active state increases when p,
is increased. The trends with which p, affects the time to memory loss of the active state do not
depend on € (SI-Figure S.29).

To gain an analytical understanding of how p, affects the stationary distribution and the time to
memory loss, we also computed analytically these quantities as a function of the system parameters
in the regime € < land e < 1 and by assuming that protein dynamics are fast compared to
chromatin dynamics. The latter assumption may be satisfied if the protein is quickly degrading
due to proteolysis [55]. In this regime, we obtain a one-dimensional Markov chain reduction of the
system (SI-Section S1.5.3), which leads to the stationary probability distribution for € < 1 as

1 e
e ifz=0

7re<<1($) ~<0 if 75 0, Diot (9)
HLP lf xr = Dtot
with
_ bt ata) i riorara)sh)
(o + 8% +1) - p \ ' B g+ (@ + ) S5 ) b B8R ()

(10)
in which = n®, wr = ué“ —H’Lﬁ, ﬂﬁ = u{% +u§0 —i—ug —1—u§0 and K; defined in SI-equation (S.161).
From these expressions, we conclude that by increasing p,, P decreases and, in turn, the height
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of the peak in correspondence to x = 0 (active chromatin state) increases to the detriment of the
height of the peak at © = Dy (repressed chromatin state). Furthermore, the smaller x4 and // are,
the higher p, has to be in order to raise the peak corresponding to the active state. These results
are in agreement with the computational results (Figures 5(d), S.28).

Using the same model reduction, we derive the formula of the normalized time to memory loss
of the active chromatin state, which, for ¢ < 1, can be approximated as

Diot—1 ;4 !
A (1+ 5 Ww)) )

€ 1
i=1 Ky

in which fo and hj are increasing functions of their arguments, h%(p,,0) = 0, and K are functions
independent of €, p', p and p, (SI-Section S1.5.4). From this expression, it follows that if p,
increases, T4 increases. This confirms that positive autoregulation helps extend the memory of the
active state.

Taken together, these findings indicate that positive TF-enabled autoregulation contributes to
extend the duration of memory of an active chromatin state, thus re-balancing the asymmetry
that naturally biases the chromatin modification circuit towards a repressed state. This is also
manifested in the effect of positive autoregulation on the time to reactivation of a gene, wherein
the time to reactivation decreases by increasing p, (SI-Figure S.30).

We also determined how the chromatin modification circuit contributes to the robustness of the
active state’s memory to perturbations that reduce the availability of X at the gene (Figure 5(f)).
For low € the robustness is improved, implying that the system is able to keep the active chromatin
state even when X is transiently removed. Then, small ¢ may be a way in which the chromatin
modification circuit enables robustness of the active state’s memory to disruption of the binding of
the TF X to DNA, such as due to DNA replication and cell division.

3.3 Wiring positively autoregulated chromatin modification circuits allows long-
term persistence of gene expression patterns

Long-term and reconfigurable memory of multiple gene expression patterns is desirable for a number
of applications, such as programmable cell therapies and in vivo transdifferentiation, wherein TFs
need to be activated in a specific temporal sequence and in an exclusive fashion [56, 57]. We thus
analyze a candidate circuit to implement this function: two positively autoregulated chromatin
modification circuits that mutually recruit writers of repressive modifications to each other (Figure
6(a)). This is also a common motif in GRNs involved in cell fate determination, such as the
PU.1/GATA.1 antagonism [35, 58], the Nanog/GATA interaction [6], and the Cdx2/Oct4 circuit
motif [6, 59].

For each gene, the chromatin modification circuit is described by the reactions in Figure 2 and
the gene expression reactions are listed in (1). In each gene’s chromatin modification circuit, k{},
is a monotonically increasing function of the other gene’s product level and k:{j‘v is a monotonically
increasing function of the gene’s self product level (SI-Section S1.6.1, SI-equations (S.192)). The
system is then obtained by input/output connecting two chromatin modification circuits through
the TFs that they are expressing (Figure 6(b)).

Deterministic behavior. By combining the ODEs of the chromatin modification circuit and
those of the gene expression circuit (equations (3) and (8), respectively) for each gene, by defining
X :=n%X /Diot, Z := n? /Dyot and by properly setting the inputs according to SI-equations (S.195),
we obtain the ODEs of the mutual repression system (SI-equations (S.196)). To determine the
number and stability of equilibria, we exploit the results obtained for the positive autoregulation
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circuit. In fact, the block diagram in Figure 6(b) makes it explicit that the mutual repression
circuit is the input/output composition of two positively autoregulated genes, in which the output
of one gene, n* or nZ, is used as an input to the other gene by increasing its k{},. This analysis,
described in SI-Section S1.6.3, shows that, for low p values and large €, the system has a unique
stable steady state about the origin, where both genes are “off”. By increasing p, the system
acquires two stable steady states, in which one gene is “on” and the other is “off”. That is, one
equilibrium with DA% > D4Z and the other equilibrium with DA~X <« DA% When ¢ is small,
also the steady state about the origin is stable, while when € is large, it is not. Thus, when p is large
(high expression rate) and e is small, the system is tri-stable. When p’ is increased, the system can
have four co-existing stable steady states, acquiring a new stable steady state in which both genes
are “on” (SI-Figure S.31). Since we expect y' to be much smaller than one, this last scenario may
not be observed in practice.

Stochastic behavior. Here, denoting the number of nucleosomes in each gene with activating
histone modifications as n* and n?#, we first determine how p,, p., and € shape the stationary
distribution of (nA’X,nA’Z ) and hence the admissible gene expression patterns. Specifically, we
perform a computational study of the distribution by simulating the full set of reactions (SI-Table
5) with the SSA [50]. If the production rate constant p of both proteins is low, independent of e,
the distribution has one peak only in correspondence to both genes being “off”, consistent with
the deterministic analysis. Therefore, the only possible gene expression pattern in this regime
is both genes “off”. When p is sufficiently increased, the peak in correspondence of both genes
“off” disappears and two peaks arise in correspondence of one gene “on” and the other “off”, thus
enabling two symmetric gene expression patterns. There is an intermediate protein production rate
constant regime, in which a third gene expression pattern with both genes “off” is also possible. In
all cases, decreased € makes the distribution more concentrated about each of the peaks, thereby
also reducing the probability of transitioning out of that expression pattern (Figure 6(c)). The
admissible gene expression patterns are largely shaped by the choice of the two protein production
rate constants (SI-Figure S.34). Reducing ,U,,, as before, biases the distribution towards the repressed
chromatin state (%, n*%) ~ (0,0) (SI-Figure S.33) while varying ¢ does not change the trends
with which the key parameters affect the distribution (SI-Figure S.32). The computational results
of Figure 6(c) are in agreement with those obtained from the analytical study (SI-Section S1.6.4).

Furthermore, we determine computationally how e affects the robustness of the memory of an
admissible gene expression pattern with respect to resetting the amount of the gene’s protein
products X and Z to 0 (Figure 6(d)). Lower e values result into enhanced robustness of the
pattern’s memory to resetting nX and n? to zero, indicating that the chromatin modification
circuit with lower € helps memory of co-existing gene expression patterns persist through changes
in the availability of TFs to the promoters. Finally, we analyzed whether overexpression of TF
can transition the system from one gene expression pattern to the other one. Indeed, even when
a gene expression pattern displays high robustness to TFs variability (low €), the system allows a
transition from one admissible expression pattern to the other one by TF overexpression (SI-Figure
S.35). The speed of transition increases with the level of overexpression and decreases with e.

4 Discussion

We analyzed the dynamics of a biologically motivated circuit motif among histone modifications and
DNA methylation within a gene, which we called the gene’s inner chromatin modification circuit
(Figure 1(d)). We found that separation of time scales among three constituent processes, basal
erasure, recruited erasure, and auto/cross-catalysis controls memory of input stimuli. Specifically,
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when basal erasure rate € is sufficiently lower than both recruited erasure rate ¢ and auto/cross-
catalysis rates (o, @, /), then the chromatin modification circuit shows bistability, hysteresis,
and the probability distribution of chromatin state is highly concentrated about the active and
repressed states (Figure 3(c)-(d) and Figure 4(a)). Furthermore, the time to memory loss of either
active or repressed states increases with €, but significantly more so for the repressed chromatin
state due to the cross-catalysis among repressive histone modifications and DNA methylation. This
asymmetry is enhanced by smaller y/, which is the ratio between the decay rate of DNA methy-
lation and that of activating histone modifications. Since the decay rate of DNA methylation is
very small due to the maintenance activity of DNMT1 enzyme, we estimated p/ < 1 (SI-Section
S1.3.1). In this parameter regime, the active chromatin state becomes poorly robust to repressive
input stimuli (Figure 3(f)) and the height of the peak of the distribution corresponding to the
active chromatin state decreases (Figure 4(a)). TF-enabled positive autoregulation re-balances this
asymmetry, thereby allowing enhanced robustness of the active chromatin state to repressive input
stimuli (Figure 5(c)). At the same time, under time scale separation, the chromatin modification
circuit enables robustness of the active chromatin state to repetitive disruptions of the positive
autoregulation loop (Figure 5(f)). By wiring positively autoregulated chromatin modification cir-
cuits, we can thus obtain concurrent mutually exclusive gene expression patterns, which are robust
to repeated disruptions of the regulatory links (Figure 6).

In addition to TF-enabled positive autoregulation, other forms of regulation are also possible,
such as negative autoregulation and combinations of the two. For example, a form of TF-enabled
negative autoregulation is obtained when the protein X recruits writers of repressive chromatin
modifications. An instance of a TF that does so is the LANA protein, which recruits DNMT3 to
DNA [60]. Furthermore, different forms of autoregulation motifs can be obtained when X regulates
the expression of chromatin modifications’ erasers instead of writers. This is observed, for example,
for TF Oct4, which increases the expression of H3K9me3 eraser JMJD2A and the expression of TET
enzymes [61, 62] or in the regulatory system of olfactory receptor activation, in which the expressed
OR protein induces the expression of enzyme Adcy3, which removes the histone demethylase LSD1
[63]. Future work will be devoted to analyzing the dynamical properties of these biologically found
regulatory motifs.

The non-dimensional parameters €, €, pu, and g/, which control the relative time scales among
the circuit’s constituent processes, are known functions of the concentrations of erasers, writers,
and readers of nucleosome modifications as well as of cell proliferation rate. As a consequence, our
model can predict how experimental interventions on these molecular players and cell division rate
will affect plasticity, captured by less concentrated distributions of chromatin states, the kinetics
of gene reactivation, and the robustness of active states to repressive stimuli. Indeed, our model
predicts that in the absence of time scale separation, which can be obtained by increasing ¢, the
cell should be in a more plastic state, and gene reactivation should be faster and less variable.
This is consistent with the experiments of [52], in which e was artificially increased by increasing
proliferation rate. Similarly, our model predicts that increasing ' should make gene re-activation
faster and less stochastic. Our expression p’ = k/q’f / ké also suggests that increasing the level of TET
enzymes effectively increases p/ only if the level of MBD proteins is sufficiently low (SI-equation
(5.76)). Indeed, reprogramming experiments where TET was increased did not show dramatic
changes on reprogramming kinetics [64], but knocking down MBD proteins showed fast and almost
deterministic reactivation kinetics [53]. Future experiments on semi-synthetic chromosomally inte-
grated reporter systems will be required to directly validate some of the model’s predictions. For
example, experiments in which € is artificially increased by concurrently recruiting erasers for both
H3K9 and H3K4 methylation, such as JMJD2A and JARID, will demonstrate the morphing of
the distribution from bimodal to unimodal. Experiments where only erasers for H3K4 methylation
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(JARID) will be recruited can validate the prediction that the memory of the repressed state is
extended through the increase of y and //. Finally, experiments in which H3K9 methylation is
completely erased through recruitment of JMJD2A but DNA methylation is present should show
loss of bimodality, since this is not present in a model that only includes DNA methylation and
H3K4 methylation (SI-Figure S.2). In addition, we will revise the model in order to remove some
of the biological simplifications, such as the well-mixed model simplification and the assumption
that a nucleosome cannot be characterized by more than one modified histone simultaneously.

Our results suggest that reduced time scale separation (larger ¢ and/or reduced €) may be
implicated in phenotypic plasticity, wherein larger € allows for more probable transitions among
multiple admissible gene expression patterns and thus among different phenotypes (Figure 6(c)).
While small e embodies a gene expression pattern with high robustness to loss of TF binding, larger
e allows for more probable transitions following TF binding disruptions (Figure 6(d)). It is plausible
that physiological requirements for high degree of cellular plasticity at the initial stages of cell fate
specification may be satisfied by a transiently larger € at cell fate specific genes. Locking-in of the
fate may then be aided by a decreased € at these cell fate specific genes in terminally differentiated
cells [8]. On the other hand, accidental changes of phenotype often result in disease such as cancer
[65],[66]. These accidents may correlate with increased e and/or p’ at those genes that become
disregulated. Global increases in € may then be caused by increased proliferation rates since these
increase the basal decay rate of all modifications. Indeed, cellular states with high proliferation
rates are associated with larger ¢ and hence with increased plasticity. These states include fastly
proliferating cancer cells, pluripotent stem cells, and, most generally, progenitor cells.

Finally, genomic integration of engineered genetic systems has appeared as a promising approach
for the creation of organoids [67] and for in wvivo transdifferentiation [56, 57]. In particular, we
found that positive autoregulation, by recruitment of writers of activating modifications or of
erasers of repressive modifications, enables robustness of active chromatin states to endogenous
silencing factors. This provides design guidelines for chromosomally integrated gene expression
cassettes that are resilient to silencing. Similarly, mutual repression circuits obtained by chromatin
state regulation, as opposed to traditional TF-enabled regulation, can be used for future cell fate
decision circuits that remain locked-in with high probability but yet are reconfigurable by external
interventions.
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Figure 1: The gene’s inner chromatin modification circuit. (a) Nucleosome modifications: D
(unmodified nucleosome), D* (nucleosome with a activating histone modification, H3K4me3/ac), D} (nu-
cleosome with only DNA methylation, CpGme), DY (nucleosome with only a repressive histone modification,
H3K9me3) and DY, (nucleosome with both H3K9me3 and CpGme). (b) Pictorial representation of a gene
with its nucleosomes carrying various modifications. The left side arrow represents the promoter. (¢) Com-
petitive interactions between opposing histone modifications (activating DA and repressive DY), wherein
each modification recruits writers of itself and erasers of the opposing modification. (d) Complete chromatin
modification circuit that includes all the interactions described in Section 2.1 (see also SI-Figures S.2-S.3).
The numbers shaded in gray on the arrows correspond to the reactions associated with the arrows, described
in the main text and in Figure 2. In (¢) and (d), enzymes that write (writers) and erase (erasers) each mod-
ification are represented as W1, Wy, W3 and E1, Eo, E3, respectively. The socket on each enzyme represents
a domain that binds to protein readers of the indicated (by the dashed lines) modification, enabling the pro-
cess by which each modification recruits writers or erasers to nearby histones. To distinguish the KMTs for
H3K9 and H3K4, we define the writers for H3K9 methylation (Suv39H1) as KMT% and the writers for H3K4
methylation (SETs and MLL1/2) as KMT#. Similarly, to distinguish the HDMTs for H3K9 methylation
and H3K4 methylation, we define the erasers for H3K9 methylation (JMJD2A) as HDMTZ# and the erasers
for H3K4 methylation (JARID) as HDMT#. We use colored dotted lines to depict the recruitment process
by H3K4me3/ac (green lines), H3K9me3 (red lines), and CpGme (orange lines) and we use dotted black
arrows to depict the consequent effect on writing/erasing. The solid black arrow represents the nucleosome
modification.
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Figure 2: Reactions associated with the chromatin modification circuit motifs. Each reaction
is associated with a number, which is referred to in the main text. Specifically, reactions (0), @), @),
®), @0 and @ describe de novo establishment. Reactions @) and (§) describe auto-catalysis, wherein a
modification recruits writers of the same modification to nearby nucleosomes. Reactions @ and @ describe
cross-catalysis, wherein DNA methylation recruits writers of repressive histone modifications and viceversa,
respectively. Reactions ®), (D), and @ represent basal erasure while reactions ®), @), @3, and {9 represent
recruited erasure, wherein competing modifications recruit erasers of each other. The different colored lines
delimit the sets of reactions that take place for each of the circuit motifs shown in Figure 1 and SI-Figures
S.2-S.3. Specifically, SI-Figure S.2 depicts the circuit between activating histone modifications and DNA
methylation and SI-Figures S.3 depicts the circuit among repressive modifications. Here, we use one-step
enzymatic reaction models [68] to capture histone and DNA modifications. In the bottom-right corner, we
indicate how the reaction rate constants depend on the amount of writers and erasers, in which f(-) is a
generic increasing function. Here, 7 and 7 are between 0 and 1 and defined in Section 2.1.2. Specifically,
n =1 in the absence of DNMT1 and 77 = 1 in the absence of MBD (see SI-Section S1.1 for the detailed form
of the reaction constants and their derivation).
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Figure 3: Time scale parameters ¢, ¢, ; and p/ control bistability and hysteresis in the
chromatin modification circuit. (a) Diagram of the gene’s inner chromatin modification circuit in which,
compared to Figure (d),we removed the lines and arrows indicating recruitment and catalysis. The labels
on each arrow specify the processes enabling that nucleosome modification as indicated below the reaction
diagram. We use purple labels for repressive modifications and blue labels for activating modifications. A
visual representation of the relationships between the rates of these processes and the parameters e, el, I
and ul is provided. In particular, ¢ and € quantify the time scales of basal and recruited erasure rates of
all modifications relative to those of auto and cross-catalysis. Similarly, x4 and ,u/ quantify the time scales of
erasure rates (basal and recruited) of repressive histone modifications and DNA methylation, respectively,
relative to those of activating histone modifications. For the mathematical definition, refer to equation
(2) and the related text. (b) Block diagram corresponding to the chromatin modification circuit. Here,
n4, nft, n2 and nf, denote the numbers of modified nucleosomes DA, D}, DE, and DY, within the gene,
k= (ki k) and nft = nft + nf 4+ nk. The pair (b, k{},) are the inputs and (nf,n?) are the outputs.
(c) Steady states of the system as a function of ¢, 4 and p/. Here, DA = n? /Dy and D = nft/Diy; are
the fractions of nucleosomes with activating or repressive modifications within the gene with a total of Dyt
nucleosomes. Plots are obtained from system (3) with u4 = uff = uff = 0. The solid lines represent stable
steady states, the dashed lines represent unstable steady states and the black circle represents the bifurcation
point (saddle-node bifurcation). In these plots uj = uff) = ufy = ug = 0.1 and all the other parameters
are set equal to 1 (SI-Figure S.11 shows different values). (d) Chart depicting the (e, u') combinations that
result in a monostable (red, green or white) or bistable (yellow) system for u = 10 (SI-Figure S.12 shows
different values of u). Here, ¢ = 1. (e) Input/output steady state characteristics displaying hysteresis for
the (u?, D) and (uf, D®) pairs, with uft = ul = uf, for different values of ¢ obtained from simulations
of system (3). We con51der (DR D4) = (1, 0) as initial conditions and we set u® = 0, a = a = o/ =1,
u(‘;‘ —ufl =uf =01,¢ =1, p =1 and ' = 0.8 (S-Figures S.13 show different Values of Mo " and
€). (f) Input/output steady state characteristics for the (u®, D) pair, for different values of z obtalned
from blmulatlons of system (3). We consider (DR D4 = (0 1) as initial conditions and we set u? = 0,
€ =007, u} =uf =ul =01, a =a=a =0.1, and all the other parameters equal to 1 (SI-Figure
S.15(a) shows the (uft, D) steady state Charactemstlcs for the same parameter values). (g) Input/output
steady state characteristics for the (u®, D?) pair, for different values of € obtained from simulations of
system (3). We consider (DR, D4) = (1,0) as initial conditions and we set uf =0, e = 0.15, p =1, p’ = 1,
udt = ull = ufl = 0.1 and all the other parameters equal to 1 (SI-Figure S.15(b) shows the (u’, D) steady
state characteristics for different values of € ). In all plots u? = kit / (ki Diot), ult = kiy / (ki Dyor) for
i € {1,2}, (D4, D®) =~ (1,0) corresponds to the active state and (D4, D®) ~ (0,1) corresponds to the
repressed state. In the figure, we use green and red, respectively, to indicate the activating and repressive
modifications and related quantities.

21



(@) . y (b) "
[ [ -
10 10-2 10
15 0.4 15 0.4 8 01
7'('L I T m J T T
0 0. ‘
50 50 50 R 0 80 5 50 50 3« 50 50 50
nd o0 n nt oo n" nd oo nf nt oo nlft nt oo nft nd oo nft
R
- ]
10
© R : ? 06
50 e ’ﬂ' ™
0
WM"‘M‘M(“""""-“‘NW#N' '?-P\AM"("J 50 50 50 50
R .%n\ nR nd oo nf nt oo n
.VW
e )
/ 00 time 7 180 % time 7 1.8x10* ( ) _ €
H 50 g , 50 . .
gy e e L i R AR o A A e x10-2 ) x10°2
6
™ ™
" \MM“'!"‘ W J ‘A
0 k 0.
50 50 50 %0
time T 1.8x10* % time 7 1.8x10* nd oo nk nA 00 nkt
50 gy aeipree e, BT AT T 'r “
" m
i “ M'H" “f’ *
l n WAMM Mﬁ‘w.ﬂﬂtf' d Ilh ik ‘ ”lu' ! ] W
time 7 240 time 7 1.8x10° 0 time T
M "W
% nA nl
i
0 . OVL‘&: ot w1
time 7 120 0 time 7 840 0 time 7 720

Figure 4: Time scale separation parameters ¢, ¢ and ;' control bimodality, time to memory
loss, and reactivation time in the chromatin modification circuit. (a)-(b) Stationary probability
distributions 7 of (n4,n®) for the chromatin modification circuit in Figure 3(a) obtained by simulating the
reactions listed in Figure 2 with the SSA. (a) Effect of € and u' on the distribution: in the left side plots
e =0.19,0.02 and ,u/ = 1. In the right side plots, ,u/ =1,0.1 and € = 0.19. (b) Effect of the input stimulus
on the distribution: here, e = 0.12 and ul = 0.8. In the top plots, u* = 0,1, and in the bottom plots
ul = uff = u® and u® = 0,1 (SI-Figure S.18 show different values of 1 and €). The parameter values
for each panel are listed in SI-Table 1. In all simulations, ¢ = 1 and u = 1 (SI-Figures S.19-S.20 show
different values) and we decrease € by decreasing 6 + l_cg (similar results can be obtained if we vary kf/[ as
shown in SI-Figure S.17). (c) Time trajectories of n'' starting from a repressed chromatin state n = 5,
nft = nf = nfl, = 15, as € and y’ are varied. Simulations are stopped when nff = 6 for the first time. (d)
Time trajectories of n starting from an active chromatin state n = 45, nfy, = 5, as e and u’ are varied.

Simulations are stopped when nt = 6 for the first time. In all plots of (¢)-(d), time is normalized according
to T = thi Dtot, €=0.36,0.12, ' = 1,05, u =1, and € = 1 (SI-Figure S.22 shows different values of ).
The parameter values are listed in SI-Table 2. (e) Effect of ¢ on the stationary probability distribution 7.
We set e = 0.12, ul =1,p=1and € = 1,0.001 from left to right (SI-Figure S.21 shows different values of e').
The parameter values for each panel are listed in SI-Table 24. (f) Time trajectories of the system starting
from n® = 45, n® = 5 and applying an input u? that, at steady state, leads to a unimodal distribution in
the proximity of the active state n = Dyor. The parameter values are listed in SI-Table 3. In particular,

A =392 4 =01,¢= O 24, O 16, 4 = 1 and ¢ = 1 (SI-Figure S.23 shows different parameter values).
In all plots, nft = nff + ni* + nf, and simulations are obtamed by implementing the set of reactions hsted
in Figure 2 with the SSA [50]. In all simulations, a« = o =a=02 Inour model, parameters € and ¢

quantify the time scales of basal and recruited erasure rates of all modifications relative to those of auto and
cross-catalysis. Similarly, parameters u and p/ quantify the time scales of erasure rates (basal and recruited)
of repressive histone modifications and DNA methylation, respectively, relative to those of activating histone
modifications. Mathematical definitions are found in equation (2). In all plots (n?, n*) = (50, 0) corresponds
to the active state and (n,n) =~ (0,50) corresponds to the repressed state. In each panel of (c), (d), (f),
the number of trajectories plotted is 10.
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Figure 5: Positive autoregulation allows robust temporal extension of memory of the active
chromatin state. (a) Diagram of a positively autoregulated gene where the gene’s product X recruits writers
of DA. A simplified representation of the chromatin modification circuit is introduced, in which the the labels
are not represented. (b) Block diagram corresponding to the circuit in panel (a). Here, k&, = (kiy, kZ,).
Furthermore, k&, is the input and n*, the number of molecules of X, is the output, which feeds back on k‘A by
increasing its value. (c) Input/output steady state characteristics for the (uf?, D4) pair, with uff = ult = uR
for different values of p, obtained from simulations of system (S.183) with (DR DA, X) = (0,1,p,) as initial
conditions. The parameter values are listed in SI-Table 4. In particular, € = 1, pn=1, u =0.7,e=0.1. (d)
Stationary probability distribution 7 obtained by simulating the reactions hsted in SI-Table 5 with the SSA.
As before, nft = nf + nlt + nfl. The parameter values of each plot are listed in SI-Table 5. In particular,
pe=0,01,10, ¢ =1, p=1, 4/ =0.5, e =0.12 (SI-Figures S.27-S.28 show different parameter values). (e)
Time trajectories obtained by simulating the reactions listed in SI-Table 6 with the SSA with no inputs and
starting with initial conditions n? = 45, nf, = 5 and n® = p,n?. Simulations are stopped the first time at
which n = 6. In all plots, time is normalized according to 7 = t%Dtot, €e=036, 4 =05 pu=1,¢ =1,
and p, = 0,0.2,5. The parameter values of each panel are listed in SI-Table 6. In each panel, the number
of trajectories plotted is 10. (f) Time trajectories of system of reactions listed in SI-Table 5 with the SSA
starting from the active chromatin state (n? = 45, n” = 5 and n* = 45). At the indicated times, n*X is
reset artificially to zero (dashed lines). The parameter values for each simulation are listed in SI-Table 7. In
particular, p, =1, ¢/ = 0.1, u =1, ¢ = 1 and € = 0.4,0.02. For both values of ¢, the system is bistable. In
our model, ¢, defined in equation (2), is a non-dimensional parameter that quantifies the time scales of basal
erasure rate of all modifications relative to those of auto and cross-catalysis. In the figure, we use green to
indicate the activating modification and related quantities.
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Figure 6: Mutual repression circuit: robust memory of multiple co-existing gene expression
patterns. (a) Interaction diagram of two mutually repressing and positively autoregulated genes, wherein
the product of each gene recruits writers of repressive chromatin modifications to the other gene. Here, X
and Z represent the products of the two genes. (b) Block diagram corresponding to the circuit in panel
(a). Here, nX and n? correspond to the number of molecules of X and Z, respectively. (c) Stationary
probability distribution 7 of the system obtained by simulating the reactions listed in SI-Tables 8-9 with the
SSA, in which n4¢ with £ = X, Z represents the number of nucleosomes in each gene with activating histone
modifications. In (d), p, = p, = p with p = 0,0.1,10 and € = 0.48,0.2. The parameter values of each plot
are listed in SI-Tables 8-9. For all simulations we have u = 1, // =06, and € =1 (SI-Figures S.32-S.34
show different parameter values). (d) Time trajectories of n¥ and n*Z starting from n¥ = Dy, and
n4Z = 0, in which n and n? are reset to zero at the indicated times (dashed line). Time is normalized with
respect to %Dmt. The parameter values for each panel are listed in SI-Tables 10-11. In particular, p = 0.15,
,u, =06, u=1, ¢ =1 and ¢ as indicated. In all plots, we assume equal parameters for both chromatin
modification circuits. In our model, €, defined in equation (2), is a non-dimensional parameter that quantifies
the time scales of basal erasure rate of all modifications relative to those of auto and cross-catalysis. In all
plots (n*, nf*) ~ (50,0) and (n?*, nf*) ~ (0,50) correspond to the active and repressed state of gene ¢,
with ¢ = X, Z. In the figure, we use green and purple, respectively, to indicate D** and DA% and related
quantities.
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