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Abstract

In the last decade, the interactions among histone modifications and
DNA methylation and their effect on the DNA structure, i.e., chromatin
state, have been identified as key mediators for the maintenance of cell
identity, defined as epigenetic cell memory (ECM). In this paper, we
determine how the positive feedback loops generated by the auto and
cross-catalysis among repressive modifications affect the temporal dura-
tion of the cell identity. To this end, we conduct a stochastic analysis
of a recently published chromatin modification circuit considering two
limiting behaviors: fast erasure rate of repressive histone modifications
or fast erasure rate of DNA methylation. In order to perform this math-
ematical analysis, we first show that the deterministic model of the
system is a singular singularly perturbed (SSP) system and use a model
reduction approach for SSP systems to obtain a reduced one-dimensional
model. We thus analytically evaluate the reduced system’s stationary
probability distribution and the mean switching time between active
and repressed chromatin states. We then add a computational study of
the original reaction model to validate and extend the analytical find-
ings. Our results show that the absence of DNA methylation reduces
the bias of the system’s stationary probability distribution towards the
repressed chromatin state and the temporal duration of this state’s mem-
ory. In the absence of repressive histone modifications, we also observe
that the time needed to reactivate a repressed gene with an activating

1



Springer Nature 2021 LATEX template

2 Limiting behaviors of a chromatin modification circuit

input is less stochastic, suggesting that repressive histone modifications
specifically contribute to the highly variable latency of state reactivation.

Keywords: Singular singularly perturbed system, Model reduction, Epigenetic
Cell Memory, Chromatin modifications, Synthetic biology

1 Introduction

Multicellular organisms are composed of cells with different phenotypes, even
if all cells share the same genetic sequence, and this phenotypic distinction is
maintained despite the unavoidable presence of noise. This property is known as
epigenetic cell memory (ECM). For instance, ECM allows human differentiated
cells to have different identities, even if they share the same genetic sequence,
and to maintain these identities across cell division. In the past years, several
studies have shown how the structure of the DNA, defined as chromatin state
and determined by histone modifications and DNA methylation, affects gene
expression and then has a critical role in ECM [1, 2].
This is the reason why several models describing the chromatin dynamics

have been developed and analyzed. While some of them include either histone
modifications or DNA methylation but not both [3, 4], and others are suitable
only for computational analysis [5–7], a chemical reaction model including both
DNA methylation and histone modifications has only recently appeared [8].
The circuit comprises positive feedback loops generated by the cooperation and
competition among chromatin modifications.
In this paper, we focus on determining the specific contributions of histone

modifications and DNA methylation to the features of the stationary prob-
ability distribution and temporal duration of cell memory. To this end, we
perform a mathematical analysis of this model using the theory of singular
singularly perturbed systems [9]. More precisely, we exploit this theory to
reduce the chromatin modification model to a one-dimensional system, which
we use to create a one-dimensional Markov chain suitable for analytical study.
Then, we consider two limiting cases. In the first case, we consider the limit
in which the erasure rate of DNA methylation becomes much larger than the
erasure rate of the other chromatin modifications, obtaining a reduced system
in which DNA methylation is absent. In the second case, we consider the limit
in which the erasure rate of the repressive histone modifications becomes much
larger than the erasure rate of the other chromatin modifications, thereby
obtaining a reduced system with no repressive histone modifications. In all
cases considered, the expression for the stationary distribution is obtained by
exploiting detailed balance [10], while first step analysis [11] is applied to ana-
lytically evaluate the temporal duration of memory. Finally, we validate and
extend the analytical results with computational simulations of the original
reaction model using Gillespie’s Stochastic Simulation Algorithm (SSA) [12].
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Fig 1. Reactions and diagram of the chromatin modification circuit. (a)
List of the reactions associated with the full chromatin modification circuit. The
numbers associated with the reactions are described in the main text. The boxes
enclose reactions associated with activating histone marks (blue), repressive histone
marks (pink), and DNA methylation (brown). Dark shades are associated with the
establishment and light shades are associated with erasure. (b) Full chromatin
modification circuit diagram. (c) Simplified circuit diagram in which DNA
methylation is absent. (d) Simplified circuit diagram in which repressive histone
modification is absent. In (b), (c), and (d), each arrow corresponds to reactions in
panel (a) associated with the same number. More precisely, solid arrows represent
the establishment and erasure reactions of chromatin modifications, while dashed
arrows represent the increase of the establishment and erasure reaction rate due to
the presence of another species.

2 Models

The chromatin modification circuit model analyzed in this work is developed in
[8]. It includes H3K9 methylation (H3K9me3) and DNA methylation (CpGme),
associated with repressed chromatin state [13], H3K4 methylation/ acetylation
(H3K4me3/ac), associated with active chromatin state ([1], Chapter 3 and [14]),
and their known interactions.

The basic unit of the model is D, that is, the nucleosome with DNA wrapped
around it. Then, we have DA, that is, nucleosome with H3K4me3/ac, DR

2 ,
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that is, nucleosome with H3K9me3, DR
1 , that is, nucleosome with CpGme, and

DR
12, that is, nucleosome with both H3K9me3 and CpGme. In terms of key

molecular interactions considered in the model, all the modifications can be
de novo established (reactions 0O, 1O, and 8O). Then, the read-write mecha-
nism, in which histone modifications recruit marks of the same kind to nearby
nucleosomes, generates auto-catalytic loops (reactions 2O, 3O). Similarly, the
cooperation between DNA methylation and repressive histone modification,
through which each mark enhances the creation of the other, generates cross-
catalytic loops (reactions 12O, 13O). Finally, basal erasure and recruited erasure,
wherein activating marks recruit repressive mark’s eraser enzymes and vicev-
ersa, are represented by reactions 4O, 5O, 9O and 6O, 7O, 10O, 11O, respectively.
In this reaction model, it is introduced the assumption that the rate of the
establishment, auto and cross-catalysis, and erasure of H3K9me3 (DNA methy-
lation) does not change if the other repressive chromatin modification is present
on the same nucleosome. All the reactions are listed in Fig. 1(a) and the dia-
grams of the chromatin modification models are represented in Fig. 1(b)-(d).
More precisely, Fig. 1(b) shows the full chromatin modification circuit, Fig. 1(c)
shows the simplified chromatin modification circuit including only activating
and repressive modifications, and Fig. 1(d) shows the simplified chromatin
modification circuit that only includes activating histone modifications and
DNA methylation.

Now, let us introduce the ordinary differential equation (ODE) model associ-
ated with the full chromatin modification circuit. More precisely, by letting
nDA , nDR

1
, nDR

2
, nDR

12
and nD represent the number of DA,DR

1 ,D
R
2 ,D

R
12,D,

we introduce the ODE model in terms of the fractions D̄A = nDA/Dtot,
D̄R

1 = nDR
1
/Dtot, D̄R

2 = nDR
2
/Dtot, D̄R

12 = nDR
12
/Dtot and D̄ = nD/Dtot,

with Dtot the total number of modifiable units, that is the total number of
nucleosomes within the gene of interest. This can be done by assuming Dtot

sufficiently large, such that nDA , nDR
1
, nDR

2
, nDR

12
and nD can be considered

real-valued. Now, let us introduce Dtot = Dtot/Ω, with Ω the reaction volume,
and let us define the normalized inputs as ūR

1 = uR
10 + uR

1 , ū
R
2 = uR

20 + uR
2 and

ūA = uA
0 + uA, with

uRi0 =
kiW0

kAMDtot
, uRi =

kiW
kAMDtot

, for i = 1, 2, and uA0 =
kAW0

kAMDtot
, uA =

kAW
kAMDtot

. (1)

We consider ūR
1 , ū

R
2 and ūA as inputs of our dynamical system because they can

be modulated by transcription factors external to the chromatin modification
circuit [8]. Now, let us define the parameters α = kM/kAM , ᾱ = k̄M/kAM
and α′ = k

′

M/kAM : the first one represents the dimensionless rate constant of
the auto-catalytic loops, while the last two represent the dimensionless rate
constants of the cross-catalytic loops. In our analysis, without loss of generality,
we introduce the simplifying assumption that these three parameters have the
same order. Finally, let us also define
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Param. Definition Interpretation

ε (δ + k̄AE)/(kAMDtot) Parameter that scales the ratio between the rate of the basal erasure and the one of the
auto/cross-catalytic loop of each mark

ε′ kAE/kAM Parameter that scales the ratio between the rate of the recruited erasure and the one of the
auto/cross-catalytic loop of each mark

µ kRE/kAE Ratio between the erasure rates of repressive and activating histone modifications

µ′
k
′∗
T /kAE Ratio between the erasure rates of DNA methylaton and activating histone modifications

Table 1. Definitions and interpretations of ε, ε′, µ, and µ′.

ε =
δ + k̄AE
kAMDtot

, ε′ =
kAE
kAM

, µ =
kRE
kAE

, µ′ =
k

′∗
T

kAE
, (2)

with b = O(1) such that (δ + k̄RE)/(δ + k̄AE) = bµ and β = O(1) such that

(δ
′
+ k

′

T )/(δ + k̄AE) = βµ′. More precisely, µ represents the ratio between the
erasure rates of repressive histone modifications and activating histone modifica-
tions and µ′ represents the ratio between the erasure rates of DNA methylaton
and activating histone modifications. Furthermore, based on the previous defi-
nitions, we have that (δ+ k̄RE)/(k

A
MDtot) = bεµ and (δ′+k′T )/(k

A
MDtot) = βεµ′.

This implies that the dimensionless parameter ε scales the ratio between the
rate of the basal erasure and the one of the auto/cross-catalytic loop of each
mark. Finally, given that kRE/k

A
M = µε′ and k′∗T /kAM = µ′ε′, the dimensionless

parameter ε′ scales the ratio between the rate of the recruited erasure and the
one of the auto/cross-catalytic loop of each mark. We collect the definitions and
interpretations of these parameters in Table 1. Now defining the normalized
time τ = tkAMDtot, the ODEs associated with the full chromatin modification
circuit are

dD̄R
1

dτ
= (ūR1 + α′(D̄R

2 + D̄R
12))D̄ + µ(bε+ ε′D̄A)D̄R

12

− (uR20 + α(D̄R
2 + D̄R

12) + ᾱ(D̄R
1 + D̄R

12) + µ′(βε+ ε′D̄A))D̄R
1

dD̄R
2

dτ
= (ūR2 + α(D̄R

2 + D̄R
12) + ᾱ(D̄R

1 + D̄R
12))D̄ + µ′(βε+ ε′D̄A)D̄R

12

− (uR10 + α′(D̄R
2 + D̄R

12) + µ(bε+ ε′D̄A))D̄R
2

dD̄R
12

dτ
= (uR10 + α′(D̄R

2 + D̄R
12))D̄

R
2 + (uR20 + α(D̄R

2 + D̄R
12) + ᾱ(D̄R

1 + D̄R
12))D̄

R
1

− (µ′(βε+ ε′D̄A) + µ(bε+ ε′D̄A))D̄R
12 (3)

dD̄

dτ
= µ′(βε+ ε′D̄A)D̄R

1 + µ(bε+ ε′D̄A)D̄R
2

+ (ε+ ε′(D̄R
1 + D̄R

12) + ε′(D̄R
2 + D̄R

12))D̄
A

− (ūR2 + α(D̄R
2 + D̄R

12) + ᾱ(D̄R
1 + D̄R

12) + ūR1 + α′(D̄R
2 + D̄R

12) + ūA + D̄A)D̄

dD̄A

dτ
= (ūA + D̄A)D̄ − (ε+ ε′(D̄R

2 + D̄R
12) + ε′(D̄R

1 + D̄R
12))D̄

A,

with D̄ + D̄A + D̄R
1 + D̄R

2 + D̄R
12 = 1 as constraint.
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We next write the system in singular perturbation form by assuming that the
rates associated with the auto and cross-catalysis are much faster than the rate
of the erasure processes. This assumption is in agreement with empirical findings
suggesting that the natural erasure of chromatin marks is a slow process [19].
We thus let ε = cε′, with c = O(1). Then, introducing the new time variable
τ̄ = τε′ in the ODEs (3), the system of equations can be rewritten as follows:

ε′
dD̄A

dτ̄
= (ūA + D̄A)D̄ − ε′(c+ (D̄R

1 + D̄R
12) + (D̄R

2 + D̄R
12))D̄

A

ε′
dD̄R

12

dτ̄
= (uR10 + α′(D̄R

2 + D̄R
12))D̄

R
2 + (uR20 + α(D̄R

2 + D̄R
12) + ᾱ(D̄R

1 + D̄R
12))D̄

R
1

− ε′(µ(bc+ D̄A) + µ′(βc+ D̄A))D̄R
12

ε′
dD̄R

1

dτ̄
= (ūR1 + α′(D̄R

2 + D̄R
12))D̄ + ε′µ(bc+ D̄A)D̄R

12

− (uR20 + α(D̄R
2 + D̄R

12) + ᾱ(D̄R
1 + D̄R

12))D̄
R
1 − (ε′µ′(βc+ D̄A))D̄R

1 (4)

ε′
dD̄R

2

dτ̄
= (ūR2 + α(D̄R

2 + D̄R
12) + ᾱ(D̄R

1 + D̄R
12))D̄ + ε′µ′(βc+ D̄A)D̄R

12

− (uR10 + α′(D̄R
2 + D̄R

12) + ε′µ(bc+ D̄A))D̄R
2

ε′
dD̄

dτ̄
= ε′(µ′(βc+ D̄A)D̄R

1 + µ(bc+ D̄A)D̄R
2 )

+ ε′(c+ (D̄R
1 + D̄R

12) + (D̄R
2 + D̄R

12))D̄
A − (ūA + D̄A)D̄

− (ūR2 + α(D̄R
2 + D̄R

12) + ᾱ(D̄R
1 + D̄R

12) + ūR1 + α′(D̄R
2 + D̄R

12))D̄.

Here, ε′ is the small parameter that we exploit in the model reductions per-
formed in Section 4. Furthermore, when we investigate the limiting behavior of
the system for large µ′, we define the parameter U ′ := ε′µ′ and assume that it
is ε′-independent, so that the product ε′µ′ does not vanish as ε′ approaches
zero. Similarly, in order to study the behavior of the system for large µ, we
will define U := ε′µ and assume that it is ε′-independent, so that ε′µ does not
vanish as ε′ approaches zero. Each case will lead to a different reduced model,
as shown in Section 4.

3 Singular singularly perturbed system and
model reduction approach

In this section, we introduce the definition of singular
singularly perturbed system and the model reduction approach developed in
[9], which we will apply to the full chromatin modification circuit model (3).
Let us first give the definition of integral manifold S provided in [15, 16]:

Definition 3.1 (Integral manifold). Given a general dynamical system dx
dt =

f(x, y, t) with x ∈ Rn, t ∈ R, let us define a smooth surface S in Rn × R as
an integral manifold of the system if any trajectory (x(t), t) of the system, that
has at least one point in common with S, lies entirely in S.
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Definition 3.2 (Singular singularly perturbed system). Assuming x ∈ Rm

and y2 ∈ Rn, let us introduce the system

ε′ẋ = f1(x, y2, t, ε
′) ε′ẏ2 = f2(x, y2, t, ε

′), (5)

with functions f1 and f2 sufficiently smooth, and let us define the matrix

A(x, y2, t, ε
′) =

(
∂f1
∂x

∂f1
∂y2

∂f2
∂x

∂f2
∂y2

)
=

(
f1x f1y2

f2x f2y2

)
. (6)

If A(x, y2, t, 0) is singular on some subspace of Rm × Rn × R, then we define
the system in (5) as a singular singularly perturbed system [9].

Now, let us consider the following conditions [9]:

� C1: f2(x, y2, t, 0) = 0 has a smooth isolated root y2 = ϕ(x, t) with t ∈ R and
x ∈ Rm;

� C2: the matrix A, defined in (6), with y2=ϕ(x, t) and ε′ = 0 has a kernel of
dimension m and m corresponding linearly independent eigenvectors, and
the matrix

B(x, ϕ(x, t), t, 0) =
∂f2(x, ϕ(x, t), t, 0)

∂y2
(7)

has n eigenvalues λi(x, t) : Re(λi) ≤ −2θ, with θ > 0;
� C3: defining the domain X as X = {(x, y2, t, ε′)|x ∈ Rm, ||y2 − ϕ(x, t)|| ≤
ρ, t ∈ R, 0 ≤ ε′ ≤ ε′0}, the functions f1, f2 and the matrix A are continuously
differentiable (k + 2) times in X , with k ≥ 0 for some positive ε′0 and ρ.

Now, let us introduce the new variables y2 = y1 + ϕ(x, t) in system (5), that
can then be rewritten as follows:

ε′ẋ = C(x, t)y1 + F1(x, y1, t) + ε′X(x, y1, t, ε
′)

ε′ẏ1 = B(x, t)y1 + F2(x, y1, t) + ε′Y (x, y1, t, ε
′),

(8)

with

C(x, t) = f1y2(x, ϕ(x, t), t, 0),

B(x, t) = f2y2(x, ϕ(x, t), t, 0),

F1(x, y1, t) = f1(x, y1 + ϕ(x, t), t, 0)− C(x, t)y1,

F2(x, y2, t) = f2(x, y1 + ϕ(x, t), t, 0)−B(x, t)y1,

ε′X(x, y1, t, ε
′) = f1(x, y1 + ϕ(x, t), t, ε′)− f1(x, y1 + ϕ(x, t), t, 0), (9)

ε′Y (x, y1, t, ε
′) = f2(x, y1 + ϕ(x, t), t, ε′)− f2(x, y1 + ϕ(x, t), t, 0),

in which F1 and F2 are such that ||F1(x, y1, t)|| = O(||y1||2), ||F2(x, y1, t)|| =
O(||y1||2), and ε

′−1F1(x, ε
′y, t) and ε

′−1F2(x, ε
′y, t), with y = y1/ε, are con-

tinuous in X , with X defined in C3 [9]. Let us then consider the following
theorem and remark:

Theorem 3.1 (Theorem 7.1 from [9]). If conditions C1-C3 are verified, then
there exists an ε′1, 0 < ε′1 < ε′0, such that, for any ε′ ∈ (0, ε′1), system (8) has a
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unique integral manifold, y1 = ε′h(x, t, ε′), that is exponentially attractive. The
motion along this integral manifold is described by the following equation:

˙̄x = X1(x̄, t, ε
′), (10)

in which X1(x̄, t, ε
′) = C(x̄, t)h(x̄, t, ε′)+X(x̄, ε′h, t, ε′)+ε

′−1F1(x̄, ε
′h, t), with

the function h(x, t, ε′) continuously differentiable k−times with respect to x and
t.

Remark 3.1. Given the fact that the integral manifold is exponentially attrac-
tive for a sufficiently small ε′, then, for any solution (x(t), y1(t)) of (8) with
initial conditions (x(t0), y1(t0) = (x0, y01) such that |y01 − ε′h(x0, t0, ε

′)| is
sufficiently small, we have a solution of the reduced system (10) such that

x(t) = x̄(t) + ζ1(t), y1(t) = ε′h(x̄(t), t, ε′) + ζ2(t),

with ζi(t) = O(e−(θ/ε′)(t−t0)), i = 1, 2, and t ≥ t0 ([9, 17], [18] Chapter 6). This
implies that the behavior of the original system’s trajectories near the integral
manifold can be determined by studying the reduced system’s trajectories (10).

Furthermore, as described in [9, 16], we can obtain h(x, t, ε′) by introducing
the change of variable y = y1/ε

′ in (8) and rewriting it in standard singular
perturbation form:

ẋ = X̃(x, y, t, ε′) ε′ẏ = Ỹ (x, y, t, ε′), (11)

with x ∈ Rm, y ∈ Rn, t ∈ R, X̃(x, y, t, ε′) = C(x, t)y + ε
′−1F1(x, ε

′y, t) +
X(x, ε′y, t, ε′), Ỹ (x, y, t, ε′) = B(x, t)y+ε

′−1F2(x, ε
′y, t)+Y (x, ε′y, t, ε′). Given

that Fi, with i = 1, 2, are such that ||Fi(x, y1, t)|| = O(||y1||2) in X , then
ε
′−1Fi(x, ε

′y, t) are well defined as ε′ approaches zero [9]. Then, defining the
smooth isolated root of Ỹ (x, y, t, 0) = 0 as y = h0(x, t), it is possible to show
that, since conditions C1-C3 are verified, the eigenvalues λi of the matrix
(∂Ỹ /∂y)(x, h0(x, t), t, 0) satisfy the inequality Re(λi) ≤ −2θ, with θ > 0.
Then, the integral manifold y = y1/ε

′ = h(x, t, ε′) can be calculated as an
asymptotic expansion in integer powers of ε′, h(x, t, ε′) = h0(x, t) + ε′h1(x, t) +
...+ ε

′khk(x, t)+ ..., whose coefficients are smooth function with bounded norm
[16] and they can be found by substituting the expansion in the second equation
of (11), obtaining [9]:

ε′
∂h

∂t
+ ε′

∂h

∂x
X̃(x, h, t, ε′) = Ỹ (x, h, t, ε′). (12)

4 Results

In this section, we obtain reduced versions of the full chromatin modification
system (4) in the limit where ε′ approaches zero. We first show that, considering
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ε′ as small parameter, the ODE model (4) is a singular singularly perturbed
system, and then we apply the approach introduced in Section 3 to obtain
a reduced model. This allows us to obtain a one-dimensional reduced model
with one-dimensional associated Markov chain, whose stochastic properties can
be analytically determined, allowing a mechanistic understanding of how the
parameters defined in Table 1 affect system behavior. Then, in order to validate
the trends analytically determined, that rely on a deterministic quasi-steady
state approximation [20], we conduct a computational study of the original
reaction system and show that the analytically derived trends are mirrored by
the original system.
In order to single out the contributions of repressive histone modification

and DNA methylation to the system stochastic properties, we conduct the
model reduction for two limiting cases. In particular, in order to single out
the contribution of repressive histone modifications, we first introduce the ε′-
independent parameter U ′ := ε′µ′, so that ε′µ′ does not vanish as ε′ approaches
zero in the model reduction, and then we consider the limiting behavior as
U ′ → ∞. Similarly, in order to single out the contribution of DNA methylation,
we repeat the model reduction introducing the ε′-independent parameter U :=
ε′µ, so that ε′µ does not vanish as ε′ approaches zero, and then we consider
the limiting behavior as U → ∞.

4.1 Behavior of the full chromatin modification circuit
with ε′ as small parameter

Let us summarize the results of the model reduction in the following proposition:

Proposition 4.1. Let ε = cε′, with c = O(1), and let us consider the following
system:

dD̄A

dτ
=

(
(µ(bε+ ε′D̄A)µ′(βε+ ε′D̄A))K̄(ūA + D̄A)

ūA + D̄A + ūR2 + ūR1 + (α+ ᾱ+ α′)D̄R
12

)
D̄R

12

−

(
(ε+ 2ε′D̄R

12)(ū
R
2 + ūR1 + (α+ ᾱ+ α′)D̄R

12)

ūA + D̄A + ūR2 + ūR1 + (α+ ᾱ+ α′)D̄R
12

)
D̄A

dD̄R
12

dτ
=

(
(ε+ 2ε′D̄R

12)(ū
R
2 + ūR1 + (α+ ᾱ+ α′)D̄R

12)

ūA + D̄A + ūR2 + ūR1 + (α+ ᾱ+ α′)D̄R
12

)
D̄A (13)

−

(
(µ(bε+ ε′D̄A)µ′(βε+ ε′D̄A))K̄(ūA + D̄A)

ūA + D̄A + ūR2 + ūR1 + (α+ ᾱ+ α′)D̄R
12

)
D̄R

12,

with D̄A + D̄R
12 = 1. Furthermore, let (D̄(τ), D̄R

1 (τ), D̄
R
2 (τ)) =

M(D̄A(τ), D̄R
12(τ)) represent the system’s unique integral manifold. Then, for

any solution (D̄A(τ), D̄R
12(τ), D̄(τ), D̄R

1 (τ), D̄
R
2 (τ)) of (4) with initial conditions

such that |(D̄(0), D̄R
1 (0), D̄

R
2 (0))−M(D̄A(0), D̄R

12(0))| is sufficiently small, we
have that, for ε′ sufficiently small, the solution of (13), (D̄A∗(τ), D̄R∗

12 (τ)), is
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such that

(D̄A(τ), D̄R
12(τ)) = (D̄A∗(τ), D̄R∗

12 (τ)) + ζ1(τ),

(D̄(τ), D̄R
1 (τ), D̄

R
2 (τ)) = M(D̄A∗(τ), D̄R∗

12 (τ)) + ζ2(τ),
(14)

in which ζi(τ) = O(e−(θ/ε′)τ ), with i = 1, 2, θ > 0, and τ ≥ 0.

Proof Let us consider the ODE model (4) and let us define x, y2, f1 and f2 as follows:

x =

(
D̄A

D̄R
12

)
, y2 =

D̄R
1

D̄R
2

D̄

 , f1 =

(
f11
f12

)
, f2 =

f21
f22
f23

 ,

f11 = (ūA + D̄A)D̄ − ε′(c+ (D̄R
1 + D̄R

12) + (D̄R
2 + D̄R

12))D̄
A,

f12 = (uR10 + α′(D̄R
2 + D̄R

12))D̄
R
2 + (uR20 + α(D̄R

2 + D̄R
12) + ᾱ(D̄R

1 + D̄R
12))D̄

R
1

− ε′(µ(bc+ D̄A) + µ′(βc+ D̄A))D̄R
12,

f21 = (ūR1 + α′(D̄R
2 + D̄R

12))D̄ + ε′µ(bc+ D̄A)D̄R
12

− (uR20 + α(D̄R
2 + D̄R

12) + ᾱ(D̄R
1 + D̄R

12) + ε′µ′(βc+ D̄A))D̄R
1 ,

f22 = (ūR2 + α(D̄R
2 + D̄R

12) + ᾱ(D̄R
1 + D̄R

12))D̄ + ε′µ′(βc+ D̄A)D̄R
12

− ((uR10 + α′(D̄R
2 + D̄R

12)) + ε′µ(bc+ D̄A))D̄R
2 ,

f23 = ε′(µ′(βc+ D̄A)D̄R
1 + µ(bc+ D̄A)D̄R

2 + (c+ (D̄R
1 + D̄R

12) + (D̄R
2 + D̄R

12))D̄
A)

− (ūR2 + α(D̄R
2 + D̄R

12) + ᾱ(D̄R
1 + D̄R

12) + ūR1 + α′(D̄R
2 + D̄R

12) + ūA + D̄A)D̄.

Now, it is possible to show that ϕ, defined in C1, is equal to ϕ(x) = (0, 0, 0), and
that matrix A, defined in (6), with D̄ = D̄R

1 = D̄R
2 = 0 and ε′ = 0 can be written as

follows:

A(x, y2 = ϕ(x), t, 0) =

(
02,2 Ā2,3

03,2 Ā3,3

)
(15)

with

Ā2,3 =

(
0 0 (ūA+D̄A)

(uR
20+(α+ᾱ)D̄R

12) (uR
10+α′D̄R

12) 0

)
,

Ā3,3 =

(
Â2,2 Â2,1

01,2 Â1,1

)
, Â2,1 =

(
(ūR

1 +α′D̄R
12)

(ūR
2 +(α+ᾱ)D̄R

12)

)
,

Â2,2 =

(
−(uR

20+(α+ᾱ)D̄R
12) 0

0 −(uR
10+α′D̄R

12)

)
,

Â1,1 = (−(ūA+D̄A)−(ūR
1 +ūR

2 +(α+ᾱ+α′)D̄R
12) ) .

The matrix A in (15) is singular, and this implies that system (4) is singular singularly
perturbed (Def. 3.2). More precisely, A has a two-fold zero eigenvalue, with two
associated linearly independent eigenvectors, and matrix B = Ā3,3, with the definition

of B given in (7). When no external inputs are applied (uA = uR1 = uR2 = 0 and then
ūA = uA0 , ū

R
1 = uR10, and ūR2 = uR20), matrix B has three eigenvalues with negative
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real part if uR10, u
R
20, u

A
0 ≥ l with l > 0. This implies that we can apply Theorem 3.1

to reduce our system. To this end, let us first introduce the new variables D̃ = D̄/ε′,
D̃R

1 = D̄R
1 /ε′ and D̃R

2 = D̄R
2 /ε′ in (4):

ε′
dD̃R

1

dτ̄
= (ūR1 + α′(ε

′
D̃R

2 + D̄R
12))D̃ + µ(bc+ D̄A)D̄R

12

− (uR20 + α(ε
′
D̃R

2 + D̄R
12) + ᾱ(ε

′
D̃R

1 + D̄R
12) + ε′µ′(βc+ D̄A))D̃R

1

ε′
dD̃R

2

dτ̄
= (ūR2 + α(ε

′
D̃R

2 + D̄R
12) + ᾱ(ε

′
D̃R

1 + D̄R
12))D̃ + µ′(βc+ D̄A)D̄R

12

− ((uR10 + α′(ε
′
D̃R

2 + D̄R
12)) + ε′µ(bc+ D̄A))D̃R

2

ε′
dD̃

dτ̄
= µ′(βc+ D̄A)ε

′
D̃R

1 + µ(bc+ D̄A)ε
′
D̃R

2

+ (c+ (ε
′
D̃R

1 + D̄R
12) + (ε

′
D̃R

2 + D̄R
12))D̄

A (16)

− (ūR2 + α(ε
′
D̃R

2 + D̄R
12) + ᾱ(ε

′
D̃R

1 + D̄R
12))D̃

− (ūR1 + α′(ε
′
D̃R

2 + D̄R
12) + ūA + D̄A)D̃

dD̄R
12

dτ̄
= (uR10 + α′(ε

′
D̃R

2 + D̄R
12))D̃

R
2 + (uR20 + α(ε

′
D̃R

2 + D̄R
12) + ᾱ(ε

′
D̃R

1 + D̄R
12))D̃

R
1

− (µ(bc+ D̄A) + µ′(βc+ D̄A))D̄R
12

dD̄A

dτ̄
= (ūA + D̄A)D̃ − (c+ (ε

′
D̃R

1 + D̄R
12) + (ε

′
D̃R

2 + D̄R
12))D̄

A.

Now, to determine the integral manifold M(D̄A, D̄R
12) = (D̄, D̄R

1 , D̄R
2 ), let us find the

expression for the asymptotic expansion of D̃, D̃R
1 and D̃R

2 :

D̃ = h0(D̄
A, D̄R

12, ε
′) = h00(D̄

A, D̄R
12) + ε′h01(D̄

A, D̄R
12) +O(ε

′2
),

D̃R
1 = h1(D̄

A, D̄R
12, ε

′) = h10(D̄
A, D̄R

12) + ε′h11(D̄
A, D̄R

12) +O(ε
′2
), (17)

D̃R
2 = h2(D̄

A, D̄R
12, ε

′) = h20(D̄
A, D̄R

12) + ε′h21(D̄
A, D̄R

12) +O(ε
′2
).

To this end, let us substitute (17) in the first three equations of (16) to obtain

ε′
dh1
dτ̄

= ε′(
∂h1
∂D̄A

dD̄A

dτ̄
+

∂h1

∂D̄R
12

dD̄R
12

dτ̄
)

= (ūR1 + α′(ε
′
h2 + D̄R

12))h0 + µ(bc+ D̄A)D̄R
12

− (uR20 + α(ε
′
h2 + D̄R

12) + ᾱ(ε
′
h1 + D̄R

12) + ε′µ′(βc+ D̄A))h1

ε′
dh2
dτ̄

= ε′(
∂h2
∂D̄A

dD̄A

dτ̄
+

∂h2

∂D̄R
12

dD̄R
12

dτ̄
)

= (ūR2 + α(ε
′
h2 + D̄R

12) + ᾱ(ε
′
h1 + D̄R

12))h0 + µ′(βc+ D̄A)D̄R
12 (18)

− (uR10 + α′(ε
′
h2 + D̄R

12) + ε′µ(bc+ D̄A))h2

ε′
dh0
dτ̄

= ε′(
∂h0
∂D̄A

dD̄A

dτ̄
+

∂h0

∂D̄R
12

dD̄R
12

dτ̄
)

= µ′(βc+ D̄A)ε
′
h1 + µ(bc+ D̄A)ε

′
h2 + (c+ (ε

′
h1 + D̄R

12) + (ε
′
h2 + D̄R

12))D̄
A
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− (ūR2 + α(ε
′
h2 + D̄R

12) + ᾱ(ε
′
h1 + D̄R

12) + ūR1 + α′(ε
′
h2 + D̄R

12) + ūA + D̄A)h0.

Now, we can obtain hi0 and hi1, with i = 0, 1, 2, by equating the terms of the right and
left hand side of the equations above multiplied by the same power of ε′. More precisely,
given that ∂hi0

∂D̄R
12

and ∂hi0

∂D̄A are bounded ∀i = 0, 1, 2, and then ε′ ∂hi0

∂D̄R
12

, ε′ ∂hi0

∂D̄A ≪ 1 for

sufficiently small values of ε′, we can write hi0 and hi1, with i = 0, 1, 2, as follows:

h00 =
(c+ 2D̄R

12)D̄
A

ūR2 + αD̄R
12 + ᾱD̄R

12 + ūR1 + α′D̄R
12 + ūA + D̄A

,

h10 =
(ūR1 + α′D̄R

12)h00 + µ
(
bc+ D̄A

)
D̄R

12

uR20 + (α+ ᾱ)D̄R
12

,

h20 =
(ūR2 + αD̄R

12 + ᾱD̄R
12)h00 + µ′

(
βc+ D̄A

)
D̄R

12

uR10 + α′D̄R
12

, (19)

h01 =
(µ(cb+ D̄A)h20 + µ′(βc+ D̄A)h10)

ūR2 + αD̄R
12 + ᾱD̄R

12 + ūR1 + α′D̄R
12 + ūA + D̄A

,

h11 =
(ūR1 + α′D̄R

12)h01 − (αh20 + ᾱh10 + µ′(βc+ D̄A))h10

uR20 + (α+ ᾱ)D̄R
12

,

h21 =
(ūR2 + (α+ ᾱ)D̄R

12)h01 − (α′h220 + µ(bc+ D̄A))h20

uR10 + α′D̄R
12

.

Then, by introducing in the last two equations of (16) the asymptotic expansion
of D̃, D̃R

1 and D̃R
2 (17) with the expressions for hi0 and hi1 provided in (19), we

obtain the reduced system in (13), in which we have re-introduced the original
time variable τ = τ̄ /ε′. The sum of the equations in (13) is equal to zero, imply-
ing that D̄A + D̄R

12 = constant. Since D̄A + D̄R
12 + D̄ + D̄R

1 + D̄R
2 = 1 and, for

sufficiently small ε′, D̄ = ε′D̃ ≈ 0, D̄R
1 = ε′D̃R

1 ≈ 0, and D̄R
2 = ε′D̃R

2 ≈ 0, then
D̄A + D̄R

12 can be approximately set equal to 1 for sufficiently small ε′. Furthermore,
given that the integral manifold obtained, M(D̄A, D̄R

12) = (D̄, D̄R
1 , D̄R

2 ), is exponen-
tially attractive for a sufficiently small ε′ (see Theorem 3.1), then, for any solution
(D̄A(τ), D̄R

12(τ), D̄(τ), D̄R
1 (τ), D̄R

2 (τ)) of the original system (4) with initial condi-
tions such that |(D̄(0), D̄R

1 (0), D̄R
2 (0))−M(D̄A(0), D̄R

12(0))| is sufficiently small, we
have a solution of the reduced system (13), (D̄A∗(τ), D̄R∗

12 (τ)), that satisfies (14) (see
Remark 3.1). □

Now, if we multiply both sides of the ODEs in (13) by Dtot(k
A
EDtot) and

introduce k̄AW = kAW0 + kAW , k̄1W = k1W0 + k1W , and k̄2W = k2W0 + k2W , we can
rewrite system (13) as follows:

ḊA =

(
(δ + k̄RE + kREDA)(δ

′
+ k

′

T + k
′∗
T DA)K̄dim(k̄AW + kAMDA)

k̄AW + kAMDA + k̄2W + k̄1W + (kM + k̄M + k
′
M )DR

12

)
DR

12

−

(
(δ + k̄AE + 2kAEDR

12)(k̄
2
W + k̄1W + (kM + k̄M + k

′

M )DR
12)

k̄AW + kAMDA + k̄2W + k̄1W + (kM + k̄M + k
′
M )DR

12

)
DA

ḊR
12 =

(
(δ + k̄AE + 2kAEDR

12)(k̄
2
W + k̄1W + (kM + k̄M + k

′

M )DR
12)

k̄AW + kAMDA + k̄2W + k̄1W + (kM + k̄M + k
′
M )DR

12

)
DA (20)
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−

(
(δ + k̄RE + kREDA)(δ

′
+ k

′

T + k
′∗
T DA)K̄dim(k̄AW + kAMDA)

k̄AW + kAMDA + k̄2W + k̄1W + (kM + k̄M + k
′
M )DR

12

)
DR

12,

with K̄dim = 1
k1
W0+k

′
MDR

12

+ 1
k2
W0+(kM+k̄M )DR

12
. This reduced system can be

represented by the following chemical reactions:

DA kAR−−−→ DR
12, DR

12
kRA−−−→ DA (21)

with reaction rate coefficients kAR and kRA given by

kAR =
(δ + k̄AE + 2kAEDR

12)(k̄
2
W + k̄1W + (kM + k̄M + k

′

M )DR
12)

k̄AW + kAMDA + k̄2W + k̄1W + (kM + k̄M + k
′
M )DR

12

, (22)

kRA =
(δ + k̄RE + kREDA)(δ

′
+ k

′

T + k
′∗
T DA)K̄dim(k̄AW + kAMDA)

k̄AW + kAMDA + k̄2W + k̄1W + (kM + k̄M + k
′
M )DR

12

.

4.1.1 Mathematical analysis of the stochastic properties

Since the reduced chemical reaction system (21) is characterized by the con-
servation law DR

12 +DA ≈ Dtot, its stochastic behavior can be approximately
represented by a one-dimensional Markov chain with state x = nDR

12
∈ [0,Dtot].

For any state x, the rate associated with the transition to the next higher state
(x → x+ 1), λx, and the rate associated with the transition to the next lower
state (x → x− 1), γx, can be written as follows:

λx =

 (ε+ 2ε′ x
Dtot

)(k̄2W + k̄1W +
(kM+k̄M+k

′
M )

Ω x)

ūA +
(Dtot−x)

Dtot
+ ūR2 + ūR1 + (α+ ᾱ+ α′) x

Dtot

 (Dtot − x),

γx =

µ(bε+ ε′ (Dtot−x)
Dtot

)µ′(βε+ ε′ (Dtot−x)
Dtot

)K̄x(k̄
A
W +

kA
M
Ω (Dtot − x))

ūA +
(Dtot−x)

Dtot
+ ūR2 + ūR1 + (α+ ᾱ+ α′) x

Dtot

x. (23)

Here, we mathematically compute the stationary probability distribution
and the time to memory loss of active and repressed chromatin states for this
one-dimensional Markov chain.

Proposition 4.2. Let λx and γx represent the rate associated with the transi-
tion x → x+1and the rate associated with the transition x → x−1, repsectively.
Then, the stationary distribution associated with the one-dimensional Markov
chain with rates λx and γx can be written as

π(x) =

x∏
i=1

λi−1

γi
π(0) =

∏x
i=1

λi−1

γi(
1 +

∑Dtot
j=1

(∏j
i=1

λi−1

γi

)) (24)

in which
∑Dtot

x=0 π(x) = 1.
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Proof By using detailed balance, we can write λx−1π(x− 1) = γxπ(x), for any x ∈
[1,Dtot]. Then, these equalities can be combined to write π(x) =

∏x
i=1(λi−1/γi)π(0).

Finally, exploiting
∑Dtot

x=0 π(x) = 1, we obtain the formula in (24). □

Proposition 4.3. When ε ≪ 1, the stationary distribution π(x) associated
with the one-dimensional Markov chain with rates λx and γx as defined in (23)
can be written as

πε≪1(x) ≈


1

1+P if x = 0

0 if x ̸= 0,Dtot
P

1+P if x = Dtot

(25)

with P given by

P =
(ūA + ūR1 + uR2 + (α+ ᾱ+ α′))

(ūA + ūR1 + uR2 + 1)
· ūR1 + uR2
µµ′bβεK̄Dtot

ūA

·
Dtot−1∏
i=1

 2(ūR1 + uR2 + (α+ ᾱ+ α′) i
Dtot

)

µµ′ε′ (Dtot−i)
Dtot

K̄i(ūA +
(Dtot−i)

Dtot
)

 ,

and K̄Dtot
= 1

uR
10+α′ +

1
uR
20+(α+ᾱ)

.

Proof Assuming that ε′ ̸= 0 and ε ≪ 1, for any j ∈ [1,Dtot − 1] we have that∏j
i=1

λi−1

γi
≪
∏Dtot

i=1
λi−1

γi
, with λx and γx provided in (23). This implies that, when

ε ≪ 1, the sum
∑Dtot

j=0 π(j) = 1 can be approximated as

1 =

Dtot∑
j=0

π(j) =

Dtot∑
j=1

 j∏
i=1

λi−1

γi

π(0) + π(0)

≈
Dtot∏
i=1

λi−1

γi
π(0) + π(0) = π(Dtot) + π(0)

from which, introducing the notation P =
∏Dtot

i=1 (λi−1)/(γi) and writing explicitly
λx and γx, the stationary distribution formula (24) can be rewritten as done in (25).

□

By studying the expression for πε≪1(x) in (25), it is possible to notice that,
if ε ≪ 1, the only states in which π(x) does not vanish are the fully active state
x = 0 and the fully repressed state x = Dtot. More precisely, the stationary
distribution for ε ≪ 1 is bimodal, with two modes in correspondence to x = 0
and x = Dtot, and the probability of having the system in one of the intermediate
states is approximately zero. Furthermore, when ε decreases, P increases and
accordingly πε≪1(Dtot) increases to the detriment of πε≪1(0). This result is in
agreement with the structural asymmetry towards a repressed chromatin state
characterizing the chromatin modification circuit because of the cooperation
between H3K9me3 and DNA methylation (Fig. 1(b)). This result (Proposition
4.3) implies that ε plays crucial role in the duration of memory of the active and
repressed states and that, when it is small, the duration of memory increases.
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In order to make mathematically precise this qualitative statement, we
determine an expression for the temporal duration of the memory of the fully
repressed and fully active chromatin states and study how ε affects it. First, let
us provide the definition of time to memory loss and then let us introduce
the expression for the time to memory loss of the active and repressed states:

Definition 4.1 (Time to memory loss). Let tji represent the hitting time

of x = j starting from x = i, that is, tji := inf{t ≥ 0 : x(t) = j with
x(0) = i} with i, j ∈ [0,Dtot], where x(t) is the Markov chain described above.
The time to memory loss of the fully repressed chromatin state is defined as
τ0Dtot

= E(t0Dtot
). Similarly, the time to memory loss of the active state is defined

as τDtot
0 = E(tDtot

0 ).

Proposition 4.4. The time to memory loss of the repressed chromatin state
is given by

τ0Dtot
=

sDtot−1

γDtot

(
1 +

Dtot−1∑
x=1

1

sx

)
+

1

γ1
+

Dtot−1∑
x=2

sx−1

γx

1 +

x−1∑
j=1

1

sj

 , (26)

in which sx = λ1λ2...λx

γ1γ2...γx
and λx and γx are defined in (23). The time to memory

loss of the active chromatin state is given by

τDtot
0 =

s̃Dtot−1

λ0

(
1 +

Dtot−1∑
x=1

1

s̃x

)
+

1

λDtot−1
+

Dtot−1∑
x=2

 s̃x−1

λDtot−x

1 +

x−1∑
j=1

1

s̃j

 ,

(27)

in which s̃x =
γDtot−1γDtot−2...γDtot−x

λDtot−1λDtot−2...λDtot−x
.

Proof By using first step analysis [11], we can write the following equations:
τ0i = 0 if i = 0

(λi + γi)τ
0
i − λiτ

0
i+1 − γiτ

0
i−1 = 1 if i ∈ [1,Dtot − 1]

γiτ
0
i − γiτ

0
i−1 = 1 if i = Dtot

(28)

Then, by solving system (28), we obtain the formula for τ0Dtot
as in (26). A similar

approach can be used to obtain the formula for τDtot
0 as in (27). □

Proposition 4.5. Assuming ε′ ̸= 0 and normalizing τ0Dtot
and τDtot

0 with

respect to
kA
MDtot

Ω (τ̄0Dtot
= τ0Dtot

kA
MDtot

Ω and τ̄Dtot
0 = τDtot

0
kA
MDtot

Ω ), the times to
memory loss (26) and (27) in the regime ε ≪ 1 can be approximated with the
following expressions:

τ̄0Dtot
≈ GR

µµ′ε2

(
1 +

Dtot−1∑
x=1

Gx
R

gx1 (µµ
′)

)
, (29)

τ̄Dtot
0 ≈ GA

ε

(
1 +

Dtot−1∑
x=1

gx2 (µµ
′)

Gx
A

)
, (30)
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in which gx1 (µµ
′) and gx2 (µµ

′) are increasing functions of µµ′ with gx1 (0) = 0
and gx2 (0) = 0, respectively, and Gx

R, GR, GA and Gx
A are functions that do

not depend on ε, µ′ and µ.

Proof By multiplying by
kA
MDtot

Ω the expressions for times to memory loss given in
Prop. 4.4, with λx and γx defined in (23), we obtain the normalized expressions for
times to memory loss. Then, by approximating them with their dominant term (the

term O(1/ε2)) for τ̄0Dtot
and the term O(1/ε) for τ̄Dtot

0 , respectively), we obtain the
expressions (29) and (30). □

By studying the expressions for τ̄0Dtot
and τ̄Dtot

0 in (29) and (30), respectively,

it is possible to notice that decreasing ε increases both τ̄0Dtot
and τ̄Dtot

0 , implying
that lower ε extends the duration of memory of both the active and repressed
chromatin states. However, given the cooperation of the repressive marks and
the consequent structural asymmetry of the chromatin modification circuit,
τ̄0Dtot

= O(1/ε2), while τ̄Dtot
0 = O(1/ε). This implies that decreasing ε extends

more the repressed state memory than the active state memory.
Now, let us also determine the effect of the asymmetry between the erasure

rates of repressive and activating chromatin modifications, encapsulated by the
non-dimensional parameters µ and µ′. From the expression for the stationary
distribution in (25) it is possible to notice that, by reducing µ′ or µ (i.e.,
reducing the erasure rates of the repressive marks compared to the erasure rate
of the active marks), πε≪1(Dtot) increases to the detriment of πε≪1(0), i.e., the
stationary distribution shifts towards the repressed state. In agreement with
these results, when µ′ or µ decreases, τ̄0Dtot

increases, while τ̄Dtot
0 decreases,

that is, the temporal duration of the memory of the repressed state increases,
while the duration of memory of the active state decreases.

4.1.2 Computational analysis

In this section, we validate the trends determined by the analytical study in
the previous section, which exploits a deterministic quasi-steady state approx-
imation [20], and we demonstrate the validity of these results for a broader
parameter regime than ε′ ≪ 1 and ε = cε′, with c = O(1). To this end, we
employ the stochastic simulation algorithm (SSA) [12] to study via simulation
the original chemical reaction system represented in Fig. 1(b), whose reactions
are listed in Fig. 1(a).

The trend with which ε and µ′ affect the stationary distribution of the original
system π(x) is in agreement with the results obtained from the analytical study
in Section 4.1.1. The parameter ε′ does not significantly vary the way in which
ε, µ′, µ affect the stationary distribution. However, decreasing ε′ compared to ε
leads to less concentrated peaks in the bimodal stationary distribution and, by
further decreasing ε′, the distribution can become unimodal (Fig.2(b)). Now,
let us consider a parameter regime in which the system displays a bimodal
distribution and let us study how the switching time of the system temporal
trajectories depends on ε (Fig. 2(c),(d)). In particular, in agreement with
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Fig 2. Computational analysis of the full chromatin modification circuit,
shown in Fig. 1(b), using SSA. (a) The stationary probability distribution, π, for
the chromatin modification circuit represented in Fig. 1(b), whose reactions are
listed in Fig. 1(a). The parameter values considered to generate the plots are in
SI-Table S1. In particular, in the left-side plots ε = 0.28, 0.14, µ′ = 0.675, 0.35 and
ε′ = 1 and in the right-side plots ε = 0.28, 0.14, µ′ = 0.625, 0.35 and ε′ = 0.4. In all
plots nDA and nDR = nDR

1
+ nDR

2
+ nDR

12
represent the number of nucleosomes

with activating and repressive modifications. (b) The stationary distribution for the
chromatin modification circuit for different values of ε′. The parameter values
considered are listed in SI-Table S1. In particular, ε = 0.28 and ε′ = 1, 0.01. (c) Time
trajectories of nDA and nDR starting from the fully active state nDA = 50, nDR = 0
(left) and repressed state nDA = 0, nDR = nDR

12
= 50 (right) for ε′ = 1 and different

values of ε. (d) Time trajectories of nDA and nDR , as described in (c), but with
ε′ = 0.4. (e) Time trajectories of the system starting from
nDR = nDR

12
= 50, nDA = 0 and with an input uA that, at steady state, leads to a

unimodal distribution near the active state nDA ≈ 50. Each trajectory is represented
with a different color. In particular, we set ε = 0.28, ε′ = 1, µ = 1 and

µ′ = 0.675, 0.35. In (c), (d) and (e), the time is normalized (τ = t
kA
M
Ω Dtot, with Ω

the reaction volume) and the parameter values are listed in SI-Table S1.

our analytical findings, it is possible to notice that lowering ε increases both
the time that the system spends at the active state before switching to the
repressed state and the time that the system spends at the repressed state
before switching to the active state, but the latter one is a stronger effect.
We next determine via simulation how the parameter µ′ affects the reac-

tivation time, that is, the time needed to re-activate an initially repressed
chromatin state after a sufficiently large activating input stimulus uA has been
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applied (Fig. 2(e)). It is possible to notice that the time trajectories show a
switch-like behavior, and that the time needed to see the trajectory switching
to the active state after an activating input is applied becomes more variable
for small µ′. This implies that for low values of µ′ the reactivation of the gene
becomes a very stochastic process.

4.2 Limiting behavior for large µ′

In this section, we determine the stochastic behavior of the chromatin modifi-
cation circuit when µ′ is large (i.e., when the erasure of DNA methylation is
much faster than the erasure of histone modifications). Comparing the results
here with those of the previous section allows us to determine how the absence
of DNA methylation affects the system’s stochastic features. Since we are inter-
ested in the behavior of the system for large µ′, we conduct again the model
reduction by assuming that the product ε′µ′ does not vanish as ε′ approaches
zero. This leads to a different reduced model compared to the one obtained in
Section 4.1. To this end, we define the parameter U ′ := ε′µ′ and assume that it
is ε′-independent. Then, we introduce U ′ in the ODE model (4), perform the
model reduction with ε′ as a small parameter and consider the limiting case
U

′ → ∞. Then, we conduct an analytical study of the stochastic behavior of the
reduced system, and validate and extend the results obtained via simulation.

4.2.1 Model reduction

Proposition 4.6. Let ε = cε′, with c = O(1), and let U ′ := ε′µ′ be ε′-
independent. Then, let us consider the following system:

dD̄A

dτ
=

(
µ(bε+ ε′D̄A)(uA + D̄A)

ūA + D̄A + ūR2 + αD̄R
2

)
D̄R

2 −

(
(ε+ ε′D̄R

2 )(ūR2 + αD̄R
2 )

ūA + D̄A + ūR2 + αD̄R
2

)
D̄A

dD̄R
2

dτ
=

(
(ε+ ε′D̄R

2 )(ūR2 + αD̄R
2 )

ūA + D̄A + uR2 + αD̄R
2

)
D̄A −

(
µ(bε+ ε′D̄A)(uA + D̄A)

ūA + D̄A + ūR2 + αD̄R
2

)
D̄R

2 , (31)

with D̄A + D̄R
2 = 1. Furthermore, let (D̄(τ), D̄R

1 (τ), D̄
R
12(τ)) =

M(D̄A(τ), D̄R
2 (τ)) represent the system’s unique integral manifold. Then, for

any solution (D̄A(τ), D̄R
12(τ), D̄(τ), D̄R

1 (τ), D̄
R
2 (τ)) of (4) with initial conditions

such that |(D̄(0), D̄R
1 (0), D̄

R
12(0))−M(D̄A(0), D̄R

2 (0))| is sufficiently small, we
have that, for ε′ sufficiently small, the solution of (31), (D̄A∗(τ), D̄R∗

2 (τ)), is
such that

(D̄A(τ), D̄R
2 (τ)) = (D̄A∗(τ), D̄R∗

2 (τ)) + ζ1(τ),

(D̄(τ), D̄R
1 (τ), D̄

R
12(τ)) = M(D̄A∗(τ), D̄R∗

2 (τ)) + ζ2(τ),
(32)

in which ζi(τ) = O(e−(θ/ε′)τ ), with i = 1, 2, θ > 0, and τ ≥ 0.

Proof Let us introduce U ′ = ε′µ′ in system (4), obtaining
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ε′
dD̄A

dτ̄
= (ūA + D̄A)D̄ − ε′(c+ (D̄R

1 + D̄R
12) + (D̄R

2 + D̄R
12))D̄

A

ε′
dD̄R

12

dτ̄
= (uR10 + α′(D̄R

2 + D̄R
12))D̄

R
2 + (uR20 + α(D̄R

2 + D̄R
12) + ᾱ(D̄R

1 + D̄R
12))D̄

R
1

− (ε′µ(bc+ D̄A) + U ′(βc+ D̄A))D̄R
12

ε′
dD̄R

1

dτ̄
= (ūR1 + α′(D̄R

2 + D̄R
12))D̄ + ε′µ(bc+ D̄A)D̄R

12

− (uR20 + α(D̄R
2 + D̄R

12) + ᾱ(D̄R
1 + D̄R

12) + U ′(βc+ D̄A))D̄R
1 (33)

ε′
dD̄R

2

dτ̄
= (ūR2 + α(D̄R

2 + D̄R
12) + ᾱ(D̄R

1 + D̄R
12))D̄ + U ′(βc+ D̄A)D̄R

12

− (uR10 + α′(D̄R
2 + D̄R

12) + ε′µ(bc+ D̄A))D̄R
2

ε′
dD̄

dτ̄
= (U ′(βc+ D̄A)D̄R

1 + ε′µ(bc+ D̄A)D̄R
2 )

+ ε′(c+ (D̄R
1 + D̄R

12) + (D̄R
2 + D̄R

12))D̄
A

− (ūR2 + α(D̄R
2 + D̄R

12) + ᾱ(D̄R
1 + D̄R

12) + ūR1 + α′(D̄R
2 + D̄R

12) + ūA + D̄A)D̄.

Now, let us define x, y2, f1 and f2 as

x =

(
D̄A

D̄R
2

)
, y2 =

D̄R
12

D̄R
1

D̄

 , f1 =

(
f11
f12

)
, f2 =

f21
f22
f23

 ,

f11 = (ūA + D̄A)D̄ − ε′(c+ (D̄R
1 + D̄R

12) + (D̄R
2 + D̄R

12))D̄
A,

f12 = (ūR2 + α(D̄R
2 + D̄R

12) + ᾱ(D̄R
1 + D̄R

12))D̄ + U ′(βc+ D̄A)D̄R
12

− (uR10 + α′(D̄R
2 + D̄R

12) + ε′µ(bc+ D̄A))D̄R
2

f21 = (uR10 + α′(D̄R
2 + D̄R

12))D̄
R
2 + (uR20 + α(D̄R

2 + D̄R
12) + ᾱ(D̄R

1 + D̄R
12))D̄

R
1

− (ε′µ(bc+ D̄A) + U ′(βc+ D̄A))D̄R
12,

f22 = (ūR1 + α′(D̄R
2 + D̄R

12))D̄ + ε′µ(bc+ D̄A)D̄R
12

− (uR20 + α(D̄R
2 + D̄R

12) + ᾱ(D̄R
1 + D̄R

12) + U ′(βc+ D̄A))D̄R
1 ,

f23 = (U ′(βc+ D̄A)D̄R
1 + ε′µ(bc+ D̄A)D̄R

2 )

+ ε′(c+ (D̄R
1 + D̄R

12) + (D̄R
2 + D̄R

12)D̄
A

− (ūR2 + α(D̄R
2 + D̄R

12) + ᾱ(D̄R
1 + D̄R

12) + ūR1 + α′(D̄R
2 + D̄R

12) + ūA + D̄A)D̄.

Now, it is possible to calculate that ϕ(x) = (0, 0, ϕ12), with ϕ(x) defined in C1

and with ϕ12 =
(uR

10+α′D̄R
2 )D̄R

2

U ′(βc+D̄A)−α′D̄R
2

. Function ϕ12 is inversely proportional to U ′.

Furthermore, the matrix A, defined in (6), with D̄ = D̄R
1 = 0, D̄R

12 = ϕ12 and ε′ = 0
can be written as

A(x, y2 = ϕ(x), t, 0) =

(
Ā2,2 Ā2,3

Ā3,2 Ā3,3

)
(34)

with
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Ā2,2 =
(

0 0
U ′ϕ12 −α′D̄R

2 −(uR
10+α′(D̄R

2 +ϕ12))

)
,

Ā2,3 =

(
0 0 (ūA+D̄A)

U ′(βc+D̄A)−α′D̄R
2 0 ū2+α(D̄R

2 +ϕ12)+ᾱϕ12

)
,

Ā3,2 =

(
−U ′ϕ12 α′D̄R

2 +(uR
10+α′(D̄R

2 +ϕ12))
0 0
0 0

)
,

Ā3,3 =

(
Â1,1 Â1,2

02,1 Â2,2

)
, (Â1,1Â1,2) = (−U ′(βc+D̄A)+α′D̄R

2 uR
20+α(D̄R

2 +ϕ12)+ᾱϕ12 0 ) ,

Â2,2 =

(
Ã1,2

B̃1,2

)
, Ã1,2 = (−(uR

20+α(D̄R
2 +ϕ12)+ᾱϕ12+U ′(βc+D̄A)) −(uR

10+α′(D̄R
2 +ϕ12)) ) ,

B̃1,2 = (U ′(βc+D̄A) −(ū2+α(D̄R
2 +ϕ12)+ᾱϕ12+ū1+α′(D̄R

2 +ϕ12)+ūA+D̄A) ) .

The matrix (34) is singular, and this implies that the system (33) is singular singularly
perturbed (Def. 3.2). Specifically, matrix A has a two-fold zero eigenvalue, and two
linearly independent eigenvectors associated with them, and matrix B = Ā3,3, with

B defined as in (7). When there are no external inputs (uA = uR1 = uR2 = 0 and then
ūA = uA0 , ū

R
1 = uR10, and ūR2 = uR20), matrix B has three eigenvalues with negative

real part if uR10, u
R
20, u

A
0 ≥ l with l > 0. This implies that we can apply Theorem 3.1

to reduce our system. To do that, let us first introduce the variable D̂R
12 = D̄R

12 − ϕ12,
and then the variables D̃ = D̄/ε′, D̃R

1 = D̄R
1 /ε′ and D̃R

12 = D̂R
12/ε

′ in (33):

ε′
dD̃R

1

dτ̄
= (ūR1 + α′(D̄R

2 + ε′D̃R
12 + ϕ12))D̃ + µ(bc+ D̄A)(ε′D̃R

12 + ϕ12)

− (uR20 + α(D̄R
2 + ε′D̃R

12 + ϕ12) + ᾱ(ε
′
D̃R

1 + ε′D̃R
12 + ϕ12) + U

′
(βc+ D̄A))D̃R

1

ε′
dD̃

dτ̄
= U ′(βc+ D̄A)D̃R

1 + µ(bc+ D̄A)D̄R
2

+ (c+ (ε
′
D̃R

1 + ε′D̃R
12 + ϕ12 + D̄R

2 + ε′D̃R
12 + ϕ12))D̄

A (35)

− (ūR2 + α(D̄R
2 + ε′D̃R

12 + ϕ12) + ᾱ(ε
′
D̃R

1 + ε′D̃R
12 + ϕ12))D̃

− (ūR1 + α′(D̄R
2 + ε′D̃R

12 + ϕ12) + ūA + D̄A)D̃

ε′
dD̃R

12

dτ̄
= −dϕ12

dτ̄
+ (uR20 + α(D̄R

2 + ε′D̃R
12 + ϕ12) + ᾱ(ε

′
D̃R

1 + ε′D̃R
12 + ϕ12))D̃

R
1

+ α′D̄R
2 D̃R

12 − µ(bc+ D̄A)(ε′D̃R
12 + ϕ12)− U ′(βc+ D̄A)D̃R

12

dD̄R
2

dτ̄
= (ūR2 + α(D̄R

2 + ε′D̃R
12 + ϕ12) + ᾱ(ε

′
D̃R

1 + ε′D̃R
12 + ϕ12))D̃

+ U ′(βc+ D̄A)D̃R
12 − (α′D̃R

12 + µ(bc+ D̄A))D̄R
2

dD̄A

dτ̄
= (ūA + D̄A)D̃ − (c+ (ε

′
D̃R

1 + ε′D̃R
12 + ϕ12) + (D̄R

2 + ε′D̃R
12 + ϕ12))D̄

A.

with

dϕ12

dτ̄
=

∂ϕ12

∂D̄A

dD̄A

dτ̄
+

∂ϕ12

∂D̄R
2

dD̄R
2

dτ̄
= − U ′(uR10 + α′D̄R

2 )D̄R
2

(U ′(βc+ D̄A)− α′D̄R
2 )2

dD̄A

dτ̄

+
(uR10 + 2α′D̄R

2 )(U ′(βc+ D̄A)− α′D̄R
2 ) + (uR10 + α′D̄R

2 )α′D̄R
2

(U ′(βc+ D̄A)− α′D̄R
2 )2

dD̄R
2

dτ̄
.
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Now, similarly to what we did in Section 4.1, in order to determine the integral
manifold M(D̄A, D̄R

2 ) = (D̄, D̄R
1 , D̄R

12), we evaluate the asymptotic expansion of D̃,
D̃R

1 and D̃R
12, that can be written as follows:

D̃ = h0(D̄
A, D̄R

2 , ε′) = h00(D̄
A, D̄R

2 ) + ε′h01(D̄
A, D̄R

2 ) +O(ε
′2
),

D̃R
1 = h1(D̄

A, D̄R
2 , ε′) = h10(D̄

A, D̄R
2 ) + ε′h11(D̄

A, D̄R
2 ) +O(ε

′2
), (36)

D̃R
12 = h2(D̄

A, D̄R
2 , ε′) = h20(D̄

A, D̄R
2 ) + ε′h21(D̄

A, D̄R
2 ) +O(ε

′2
).

To this end, we plug (36) into the first three equations of (35), obtaining

ε′
dh0
dτ̄

= ε′(
∂h0
∂D̄A

dD̄A

dτ̄
+

∂h0

∂D̄R
2

dD̄R
2

dτ̄
)

= U ′(βc+ D̄A)h1 + µ(bc+ D̄A)D̄R
2

+ (c+ (ε
′
h1 + ε′h2 + ϕ12 + D̄R

2 + ε′h2 + ϕ12))D̄
A

− (ūR2 + α(D̄R
2 + ε′h2 + ϕ12) + ᾱ(ε

′
h1 + ε′h2 + ϕ12))h0

− (ūR1 + α′(D̄R
2 + ε′h2 + ϕ12) + ūA + D̄A)h0

ε′
dh1
dτ̄

= ε′(
∂h1
∂D̄A

dD̄A

dτ̄
+

∂h1

∂D̄R
2

dD̄R
2

dτ̄
)

= (ūR1 + α′(D̄R
2 + ε

′
h2 + ϕ12))h0 + µ(bc+ D̄A)(ε

′
h2 + ϕ12)

− (uR20 + α(D̄R
2 + ε

′
h2 + ϕ12) + ᾱ(ε

′
h1 + ε

′
h2 + ϕ12) + U ′(βc+ D̄A))h1

ε′
dh2
dτ̄

= ε′(
∂h2
∂D̄A

dD̄A

dτ̄
+

∂h2

∂D̄R
2

dD̄R
2

dτ̄
)

= −dϕ12

dτ̄
+ (uR20 + α(D̄R

2 + ε′h2 + ϕ12) + ᾱ(ε
′
h1 + ε′h2 + ϕ12))h1

+ α′D̄R
2 h2 − µ(bc+ D̄A)(ε′h2 + ϕ12)− U ′(βc+ D̄A)h2.

Now, we can obtain hi0 and hi1, with i = 0, 1, 2, by equating the terms of the right and
left hand side of the equations above multiplied by the same power of ε′. Specifically,
since ∂hi0

∂D̄R
2

and ∂hi0

∂D̄A are bounded for any i = 0, 1, 2 (i.e., ε′ ∂hi0

∂D̄R
2

, ε′ ∂hi0

∂D̄A ≪ 1 for

sufficiently small ε′) and since for U ′ ≫ 1 we have that ϕ12 ≪ 1 and dϕ12/dτ̄ ≈
(uR10+2α′D̄R

2 )h2, we can rewrite the expressions for hi0 and hi1, i = 0, 1, 2, as follows:

h00 =
µ(bc+ D̄A)D̄R

2 + (c+ D̄R
2 )D̄A

ūR2 + αD̄R
2 + ūA + D̄A

,

h10 =
(ūR1 + α′(D̄R

2 + ϕ12))h00
U ′(βc+ D̄A)

, h20 =
(uR20 + αD̄R

2 )h10

U ′(βc+ D̄A) + (uR10 + 2α′D̄R
2 )

,

h01 =
U ′(βc+ D̄A)h11 + (h10 + 2h20)D̄

A − ((α+ ᾱ+ α′)h20 + ᾱh10)h00

ūR2 + αD̄R
2 + ūR1 + α′D̄R

2 + ūA + D̄A
, (37)

h11 =
(ūR1 + α′D̄R

2 )h01 + α′h20h00 + µ(bc+ D̄A)h20 − (ᾱh10 + (α+ ᾱ)h20)h10
U ′(βc+ D̄A)

,
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h21 =
(ᾱh10 + (α+ ᾱ)h20)h10 + (uR20 + αD̄R

2 )h11 − µ(bc+ D̄A)h20

U ′(βc+ D̄A) + (uR10 + 2α′D̄R
2 )

.

Then, by considering the limiting condition U ′ → ∞, the expressions for hi0 and hi1
can be approximated as

h00 =
µ(bc+ D̄A)D̄R

2 + (c+ D̄R
2 )D̄A

ūR2 + αD̄R
2 + ūA + D̄A

, h10 = h20 = h01 = h11 = h21 = 0. (38)

Now, by plugging the asymptotic expansion of D̃, D̃R
1 and D̃R

12 (36) with the expres-
sions for hi0 and hi1, i = 0, 1, 2, given in (38), into the last two ODEs of (35), we
obtain the reduced system in (31), in which we have re-introduced the original time
variable τ = τ̄ /ε′. It is possible to notice that the sum of the two ODEs in (31)
is equal to zero, implying that D̄A + D̄R

2 = constant. Since the conservation law
D̄A+D̄R

12+D̄+D̄R
1 +D̄R

2 = 1 holds and, for sufficiently small ε′ and sufficiently large
U ′, D̄ = ε′D̃ ≈ 0, D̄R

1 = ε′D̃R
1 ≈ 0, and D̄R

12 = ε′D̃R
12 ≈ 0, then D̄A + D̄R

2 can be

approximately set equal to 1 for sufficiently small values of ε′ and sufficiently large U
′
.

Furthermore, given that the integral manifold obtained, M(D̄A, D̄R
2 ) =

(D̄, D̄R
1 , D̄R

12), is exponentially attractive for a sufficiently small ε′ (see Theorem 3.1),
then, for any solution (D̄A(τ), D̄R

2 (τ), D̄(τ), D̄R
1 (τ), D̄R

12(τ)) of the original system
(4) with initial conditions such that |(D̄(0), D̄R

1 (0), D̄R
12(0))−M(D̄A(0), D̄R

2 (0))| is
sufficiently small, we have a solution of the reduced system (31), (D̄A∗(τ), D̄R∗

2 (τ)),
that satisfies (32) (see Remark 3.1). □

Now, multiplying both sides of the ODEs in (31) byDtot(k
A
EDtot) and defining

k̄AW = kAW0+kAW , and k̄2W = k2W0+k2W , system (31) can be rewritten as follows:

ḊA =

(
(k̄AW + kAMDA)(δ + k̄RE + kREDA)

(k̄AW + kAMDA) + (k̄2W + kRMDR
2 )

)
DR

2

−

(
(k̄2W + kRMDR

2 )(δ + k̄AE + kAEDR
2 )

(k̄AW + kAMDA) + (k̄2W + kRMDR
2 )

)
DA (39)

ḊR
2 =

(
(k̄2W + kRMDR

2 )(δ + k̄AE + kAEDR
2 )

(k̄AW + kAMDA) + (k̄2W + kRMDR
2 )

)
DA

−

(
(k̄AW + kAMDA)(δ + k̄RE + kREDA)

(k̄AW + kAMDA) + (k̄2W + kRMDR
2 )

)
DR

2 .

This reduced system can be represented with the following chemical reactions:

DA kAR−−−→ DR
2 , DR

2
kRA−−−→ DA (40)

with reaction rate coefficients kAR and kRA given by

kAR =

(
(k̄2W + kRMDR

2 )(δ + k̄AE + kAEDR
2 )

k̄AW + kAMDA + k̄2W + kRMDR
2

)
,

kRA =

(
(k̄AW + kAMDA)(δ + k̄RE + kREDA)

k̄AW + kAMDA + k̄2W + kRMDR
2

)
.



Springer Nature 2021 LATEX template

Limiting behaviors of a chromatin modification circuit 23

It is important to point out that this reduced system includes histone modifi-
cations only, whose cooperative and competitive interactions are shown in the
diagram in Fig. 1(c).

4.2.2 Mathematical analysis of the stochastic properties

The stochastic behavior of the reduced chemical reaction system (40) can be
represented by a one-dimensional Markov chain with state x = nDR

2
∈ [0,Dtot].

Furthermore, for any state x, the rate associated with the transition to the next
higher state (x → x+1), λx, and the rate associated with the transition to the
next lower state (x → x−1), γx, for this Markov chain can be written as follows:

λx =

 (k̄2W +
kR
M
Ω x)(ε+ ε′ x

Dtot
)

(ūA +
(Dtot−x)

Dtot
) + (ūR2 + α x

Dtot
)

 (Dtot − x),

γx =

 (k̄AW +
kA
M
Ω (Dtot − x))µ(bε+ ε′ (Dtot−x)

Dtot
)

(ūA +
(Dtot−x)

Dtot
) + (ūR2 + α x

Dtot
)

x.

(41)

Let us first evaluate the stationary probability distribution π(x). In particular,
since this Markov chain is irreducible and reversible, we can exploit the expres-
sion for the stationary distribution π(x) provided in Proposition 4.2 (Eq. 24),
with transition rates λx and γx as defined in (41). Now, let us evaluate π(x)
for ε ≪ 1:

Proposition 4.7. When ε ≪ 1, the stationary distribution π(x) associated
with the one-dimensional Markov chain with rates λx and γx as defined in (41)
can be approximated by

πε≪1(x) ≈


1

1+P if x = 0

0 if x ̸= 0,Dtot

P
1+P if x = Dtot

(42)

with

P =
(ūA + ūR2 + α)(ūR2 )

(ūA + ūR2 + 1)(ūA)b
·
Dtot−1∏
i=1

(
ūR2 + α i

Dtot

ūA + Dtot−i
Dtot

)
·
(
1

µ

)Dtot

,

with ūA = uA0 + uA, ū
R
2 = uR

20 + uR
2 .

Proof Given that for the λx and γx defined in (41) the product
∏x

i=1(λx−1)/(γx) =
O(ε) for any x ≥ 1 except for x = Dtot, then the stationary probability distribution
π(x), provided in Proposition (4.2) when ε ≪ 1 can be rewritten as done in (42). □

It is possible to notice that, when ε ≪ 1, the distribution has two modes
in correspondence to the fully active state x = 0 and fully repressed state
x = Dtot, and the probability of having the system in the intermediate states
is approximately equal to zero. In contrast to what was observed for (25),
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by decreasing ε, P does not change, that is, the distribution does not shift
towards either x = 0 or x = Dtot. Qualitatively, when µ′ is large, DNA
methylation is erased quickly enough that its cooperation with the repressive
histone modifications becomes less effective. This also implies that when µ′ is
sufficiently large, the chromatin modification circuit (Fig. 1(b)) can be well
approximated by a circuit that takes into account histone modifications only
(Fig. 1(c)).

Then, expression (42) also implies that, when ε ≪ 1, a system starting
at x = Dtot or at x = 0 will tend to remain at that state, qualitatively
implying that ε controls the temporal extent of memory even when µ′ is large.
To make this statement mathematically precise, we evaluate how ε affects
the time to memory loss of the fully repressed chromatin state x = Dtot,
τ0Dtot

= E(t0Dtot
), and the time to memory loss of the fully active chromatin

state x = 0, τDtot
0 = E(tDtot

0 ). To this end, we can use the formulas provided
in Proposition 4.4 (Eqs. (26) and (27)) and plug into them the trasition rates
defined in (41). Now, let us focus on the regime ε ≪ 1:

Proposition 4.8. Assuming ε′ ̸= 0 and normalizing the time to memory

loss with respect to
kA
MDtot

Ω (τ̄ = τ
kA
MDtot

Ω ), the normalized time to memory
loss of the repressed and active state in the regime ε ≪ 1 can be respectively
approximated as follows:

τ̄0Dtot
≈ HR

µε

(
1 +

Dtot−1∑
x=1

Hx
R

hx
1(µ)

)
, τ̄Dtot

0 ≈ HA

ε

(
1 +

Dtot−1∑
x=1

hx
2(µ)

Hx
A

)
, (43)

in which hx
1(µ) and hx

2(µ) are increasing functions of µ with hx
1(0) = 0 and

hx
2(0) = 0, respectively, and HR, H

x
R, HA and Hx

A functions independent of ε
and µ.

Proof By multiplying by
kA
MDtot

Ω the expressions for times to memory loss given in
Prop. 4.4, with λx and γx defined in (41), we obtain the normalized expressions for
times to memory loss. Then, by approximating them with their dominant term, that is
the term of order 1/ε for both τ̄0Dtot

and τ̄Dtot
0 , we obtain the expressions (43). □

Both τ̄0Dtot
and τ̄Dtot

0 are inversely proportional to ε. Therefore, also in this
case lower ε is critical to extend the temporal duration of the memory of both
the active and repressed chromatin states. However, in contrast with what was
observed in the previous case, both τ̄0Dtot

and τ̄Dtot
0 are O(1/ε). This implies that

a reduction of ε has a similar effect on the memory of the repressed and active
chromatin state and this is because large µ′ leads to a fast erasure of DNA
methylation, compared to the erasure of the other chromatin modifications,
and then its cross-catalysis with the repressive histone modifications becomes
less effective.
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Now, let us also determine how the difference between the erasure rates
of repressive and activating histone modifications, encapsulated by the non-
dimensional parameter µ, affect the duration of memory. From the expression
for π(x) in (42), it is possible to notice that lower µ leads to higher πε≪1(Dtot)
and lower πε≪1(0). This implies that the height of the peak in correspondence
to the repressed state increases to the detriment of the height of the peak in
correspondence to the active state. In accordance with this result, if we decrease
µ, then τ̄0Dtot

increases, while τ̄Dtot
0 decreases.

4.2.3 Computational analysis

Also in this case, the analytical results were obtained using a deterministic
quasi-steady state approximation [20]. Then, in order to validate the trends
obtained in Section 4.3.2 for the full reaction system and to extend the validity
of these results to a broader parameter regime than ε′ sufficiently small and
ε = cε′, with c = O(1), we conduct a computational study. In particular, we
use the stochastic simulation algorithm (SSA) [12] to study via simulation the
behavior of the original chemical reaction system (Fig. 1(a),(b)) for large µ′.
The effect of ε and µ on the stationary distribution π(x) (Fig. 3(a)) is in

agreement with the results obtained by studing the analytical expression for
π(x), (24). The trend with ε′ is analogous to what we obtained for the previous
case study (Fig. 3(b)). Now, let us study the effect of ε on the switching time
of the system temporal trajectories (Fig. 3(c),(d)). In agreement with our
analytical findings, if ε is reduced, then the time that the system spends at the
active state before switching to the repressed state (and viceversa) increases.

Finally, we determine via simulation the effect of µ on the reactivation time
(Fig. 3(e)). As obtained for the previous case in which we did not consider large
µ′ (Fig. 2(e)), the time trajectories show a switch-like behavior. Furthermore,
the time at which a trajectory switches to the active state after an activating
input is applied is more variable for lower µ.
Overall, comparing these results to the ones obtained in Section 4.1, it is

possible to conclude that DNA methylation and its cooperation with repressive
histone modifications extend the duration of memory of the repressed chromatin
state.

4.3 Limiting behavior for large µ

In this section, we analyze the stochastic behavior of the chromatin modification
circuit for the other parameter regime of interest, that is, when µ is large (i.e.,
the erasure of repressive histone modification is much faster than the erasure of
the other modifications). This study allows us to understand how the absence
of H3K9me3 affects the stationary probability distribution and time to memory
loss of chromatin states. Since we are interested in the limiting behavior for large
µ, we conduct again the model reduction, but now by assuming that the product
ε′µ does not vanish as ε′ approaches zero. This leads to a different reduced
model compared to the previous ones. To this end, we define the ε′-independent
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Fig 3. Computational analysis of the chromatin modification circuit,
shown in Fig. 1(b), for large µ′, using SSA. (a) The stationary probability
distribution, π, for the chromatin modification circuit represented in Fig. 1(b), whose
reactions are listed in Fig. 1(a). The parameter values used to generate the plots are
in SI-Table S2. In particular, in the left-side plots ε = 0.32, 0.16, µ = 1, 0.85 and
ε′ = 1 and in the right-side plots ε = 0.32, 0.16, µ = 1, 0.85 and ε′ = 0.4. In all plots
nDA and nDR = nDR

1
+ nDR

2
+ nDR

12
represent the number of nucleosomes with

activating and repressive modifications. (b) The stationary distribution for the
chromatin modification circuit for different values of ε′. The parameter values
considered are listed in SI-Table S2. In particular, ε = 0.32 and ε′ = 1, 0.01. (c) Time
trajectories of nDA and nDR starting from the fully active state nDA = 50, nDR = 0
(left) and repressed state nDA = 0, nDR = nDR

12
= 50 (right) for ε′ = 1 and different

values of ε. (d) Time trajectories of nDA and nDR , as described in (c), but with
ε′ = 0.4. (e) Time trajectories of the system starting from
nDR = nDR

12
= 50, nDA = 0 and with an input uA that, at steady state, leads to a

unimodal distribution near the active state nDA ≈ 50. Each trajectory is represented
with a different color. In particular, we set ε = 0.16, ε′ = 1, and µ = 0.8, 0.38. In (c),

(d) and (e), the time is normalized (τ = t
kA
M
Ω Dtot, with Ω the reaction volume) and

the parameter values are listed in SI-Table S2.

parameter U := ε′µ. Then, we introduce U in the original ODE model (4),
perform the model reduction with ε′ as a small parameter and consider the
limiting case U → ∞. We then conduct an analytical study to determine the
stochastic behavior of the reduced system, and then a computational study to
validate and extend the analytical findings.
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4.3.1 Model reduction

The result of the model reduction can be summarized by the following
proposition:

Proposition 4.9. Let ε = cε′, with c = O(1), and let U := ε′µ be
ε′-independent. Then, let us consider the following system:

dD̄A

dτ
=

(
µ′(βε+ ε′D̄A)(uA + D̄A)

ūA + D̄A + ūR1

)
D̄R

1 −

(
ūR1 (ε+ ε′D̄R

1 )

ūA + D̄A + ūR1

)
D̄A

dD̄R
1

dτ
=

(
ūR1 (ε+ ε′D̄R

1 )

ūA + D̄A + ūR1

)
D̄A −

(
µ′(βε+ ε′D̄A)(uA + D̄A)

ūA + D̄A + ūR1

)
D̄R

1 , (44)

with D̄A + D̄R
1 = 1. Furthermore, let (D̄(τ), D̄R

2 (τ), D̄
R
12(τ)) =

M(D̄A(τ), D̄R
1 (τ)) represent the system’s unique integral manifold. Then, for

any solution (D̄A(τ), D̄R
12(τ), D̄(τ), D̄R

1 (τ), D̄
R
2 (τ)) of (4) with initial conditions

such that |(D̄(0), D̄R
2 (0), D̄

R
12(0))−M(D̄A(0), D̄R

1 (0))| is sufficiently small, we
have that, for ε′ sufficiently small, the solution of (44), (D̄A∗(τ), D̄R∗

1 (τ)), is
such that

(D̄A(τ), D̄R
1 (τ)) = (D̄A∗(τ), D̄R∗

1 (τ)) + ζ1(τ),

(D̄(τ), D̄R
2 (τ), D̄

R
12(τ)) = M(D̄A∗(τ), D̄R∗

1 (τ)) + ζ2(τ),
(45)

in which ζi(τ) = O(e−(θ/ε′)τ ), with i = 1, 2, θ > 0, and τ ≥ 0.

Proof The steps of the proof are similar to the ones in the proof of Proposition 4.6.
In this case, we define x and y as (D̄A D̄R

1 )T and (D̄R
12 D̄R

2 D̄)T, respectively.
Then, we verify that the system is singular singularly perturbed, so that we can
apply Theorem 3.1 to reduce it, and then we consider the limiting condition U →
∞. Given that the integral manifold obtained, M(D̄A, D̄R

1 ) = (D̄, D̄R
2 , D̄R

12), is
exponentially attractive for a sufficiently small ε′ (see Theorem 3.1), then, for any
solution (D̄A(τ), D̄R

1 (τ), D̄(τ), D̄R
2 (τ), D̄R

12(τ)) of the original system (4) with initial
conditions such that |(D̄(0), D̄R

2 (0), D̄R
12(0))−M(D̄A(0), D̄R

1 (0))| is sufficiently small,
we have a solution of the reduced system (44), (D̄A∗(τ), D̄R∗

1 (τ)), that satisfies (45)
(see Remark 3.1). See SI - Section S.1 for detailed derivation. □

If we multiply both sides of the ODEs in (44) by Dtot(k
A
EDtot) and define

k̄AW = kAW0+kAW , and k̄1W = k1W0+k1W , system (44) can be rewritten as follows:

ḊA =

(
(k̄AW + kAMDA)(δ

′
+ k

′

T + k
′∗
T DA)

k̄AW + kAMDA + k̄1W

)
DR

1 −

(
k̄1W (δ + k̄AE + kAEDR

1 )

k̄AW + kAMDA + k̄1W

)
DA

ḊR
1 =

(
k̄1W (δ + k̄AE + kAEDR

1 )

k̄AW + kAMDA + k̄1W

)
DA −

(
(k̄AW + kAMDA)(δ

′
+ k

′

T + k
′∗
T DA)

k̄AW + kAMDA + k̄1W

)
DR

1 ,
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with k̄AW and k̄1W defined as done for the ODEs (20). This reduced system can
be represented with the following chemical reactions:

DA kAR−−−→ DR
1 , DR

1
kRA−−−→ DA (46)

with reaction rate coefficients defined as

kAR =

(
k̄1W (δ + k̄AE + kAEDR

1 )

k̄AW + kAMDA + k̄1W

)
, kRA =

(
(k̄AW + kAMDA)(δ

′
+ k

′

T + k
′∗
T DA)

k̄AW + kAMDA + k̄1W

)
.

As opposed to what we obtained in the reduction done in Section 4.2.1, this
system does not include repressive histone modifications, but only DNA methy-
lation and activating histone modifications, whose interactions are shown in
the diagram in Fig. 1(d).

4.3.2 Mathematical analysis of the stochastic properties

The state of the one-dimensional Markov chain associated with the reduced
system (46), x, represents the number of DR

1 , that is, x = nDR
1

∈ [0,Dtot].
Furthermore, the rates associated with the transitions to the next higher and
lower states, λx and γx, respectively, can be written as

λx =

 k̄1W (ε+ ε′ x
Dtot

)

ūA +
(Dtot−x)

Dtot
+ ūR1

 (Dtot − x), (47)

γx =

 (k̄AW +
kA
M
Ω (Dtot − x))µ′(βε+ ε′ (Dtot−x)

Dtot
)

ūA +
(Dtot−x)

Dtot
+ ūR1

x.

Now, in order to study how large µ affects the memory of the chromatin states,
we first derive the expression for the stationary probability distribution π(x)
and then the ones for the time to memory loss of the active and repressed
states. Then, in the next section, we validate the theoretical predictions against
stochastic simulations of the full set of chemical reactions (Fig. 1(a)).
Concerning the stationary distribution, also in this case we can exploit the

expression for π(x) introduced in Proposition 4.2 (Eq. 24), plugging into the
transition rates λx and γx as defined in (47). Now, let us consider the regime
ε ≪ 1:

Proposition 4.10. When ε ≪ 1, the stationary distribution π(x) associated
with the one-dimensional Markov chain with rates λx and γx as defined in (47)
can be approximated by

πε≪1(x) ≈


1

1+P if x = 0

0 if x ̸= 0,Dtot

P
1+P if x = Dtot

(48)

with

P =
(ūA + ūR1 )(ūR1 )

(ūA + ūR1 + 1)(ūA)β
·
Dtot−1∏
i=1

(
ūR1

ūA + Dtot−i
Dtot

)
·
(

1

µ′

)Dtot

,
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with ūA = uA0 + uA, ūR
1 = uR

10 + uR
1 .

Proof Given that for the λx and γx defined in (47) the product
∏x

i=1(λx−1)/(γx) =
O(ε) for any x ≥ 1 except for x = Dtot, then, for the Markov chain considered here,
the stationary probability distribution π(x), provided in Proposition (4.2), can be
rewritten as done in (48) when ε ≪ 1. □

From (48) it is possible to notice that, when ε ≪ 1 the distribution is
bimodal and a further reduction of ε does not shift the distribution towards
the repressed state. This is because considering large µ implies that repressive
histone modifications (H3K9me3) are erased fast enough that their cooperation
with DNA methylation becomes negligible. This confirms that, when µ is
sufficiently large, the chromatin modification circuit (Fig. 1(b)) can be well
approximated by a circuit that takes into account only DNA methylation and
activating histone modifications (Fig. 1(d)). Furthermore, comparing πε≪1(x)
for the large µ case, (48), with the one obtained for the large µ′ case, (42),
the main difference to notice is that in the large µ′ case the expression for
P , (43), has the α term, while in the large µ case the expression for P , (49),
does not have it. This is because of the presence of the autocatalytic loop for
repressive histone modifications, but not for DNA methylation (Fig.1(c),(d)).
As a consequence, when no external inputs are applied (uA = uR

1 = 0 and
then ūA = uA

0 , ū
R
1 = uR

10, with uA
0 = uR

10 = u0), then the lower u0, the lower
P and then the more π(0) increases to the detriment of π(Dtot), that is, the
distribution shifts towards the active state x = 0.
On the contrary, in the large µ′ case, even if the effect of cross-catalysis is

negligible as in the large µ case, since we still have the autocatalytic loop for
DR

2 with associated rate constant α (see expression for πε≪1(x), (42), and P ,
(43)), then low u0 does not have a critical effect on varying the relative height
between the peaks (the values of π(0) and π(Dtot)).

Now, let us evaluate how ε affects τ0Dtot
= E(t0Dtot

) and τDtot
0 = E(tDtot

0 ), that
is, the time to memory loss of the fully repressed and fully active chromatin state,
respectively. To do that, we can exploit the formulas provided in Proposition
4.4 (Eqs. (26) and (27)) and plug into them the trasition rates defined in (47).
Now, focusing on the regime ε ≪ 1, these expressions can be approximated as
shown in the following proposition:

Proposition 4.11. Assuming ε′ ̸= 0 and normalizing the time to memory

loss with respect to
kA
MDtot

Ω (τ̄ = τ
kA
MDtot

Ω ), the normalized time to memory
loss of the repressed and active state in the regime ε ≪ 1 can be respectively
approximated as follows:

τ̄0Dtot
≈ L̃R

µ′ε

(
1 +

Dtot−1∑
x=1

L̃x
R

l̃x1 (µ
′)

)
, τ̄Dtot

0 ≈ L̃A

ε

(
1 +

Dtot−1∑
x=1

l̃x2 (µ
′)

L̃x
A

)
, (49)
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in which lx1 (µ
′) and lx2 (µ

′) are increasing functions of µ′ with lx1 (0) = 0 and
lx2 (0) = 0, respectively, and LR, L

x
R, LA and Lx

A functions independent of ε
and µ′.

Proof By multiplying by
kA
MDtot

Ω the expressions for times to memory loss given in
Prop. 4.4, with λx and γx defined in (47), we obtain the normalized expressions for
times to memory loss. Then, by approximating them with their dominant term, that is
the term of order 1/ε for both τ̄0Dtot

and τ̄Dtot
0 , we obtain the expressions (49). □

As for the large µ′ case, both τ̄0Dtot
and τ̄Dtot

0 are O(1/ε). This implies
that lower ε extends in a similar way the memory of both the active and
repressed chromatin states, in contrast with what was observed for the original
study case in Section 4.1, in which τ̄0Dtot

= O(1/ε2) and τ̄Dtot
0 = O(1/ε).

Concerning the effect of µ′ (the non-dimensional parameter encapsulating the
asymmetry between the erasure rates of DNA methylation and activating
histone modifications) on the memory of the chromatin states, it is possible to
notice that its trend on the stationary distribution and time to memory loss is
the same as the one that µ has in the µ′ case study (Section 4.2.2).

4.3.3 Computational analysis

We use the stochastic simulation algorithm (SSA) [12] to study via simulation
the original chemical reaction system (Fig. 1(a),(b)) for large µ. We can first
notice that the trend with which ε and µ′ affect the stationary distribution π(x)
is in agreement with the analytical findings (Fig. 4(a)). That is, smaller ε leads
to more concentrated peaks, and reducing µ′ increases the height of the peak
for the repressed state to the detriment of the height of the active state peak. It
is important to point out that in this case, when µ′ = 1 (DNA methylation and
activating histone modifications have the same erasure rate), the distribution is
shifted towards the active state (Fig. 4(a)). This bias is given by the presence
of the auto-catalytic loop characterizing the histone modification dynamics,
but not the DNA methylation dynamics (Fig. 1(c),(d)). Furthermore, the effect
of ε′ is similar to what was observed for the previous case studies (Fig. 4(b)).
We then consider a parameter regime in which the system displays a bimodal
distribution and study the effect of ε on the switching time of the temporal
trajectories (Fig. 4(c),(d)). It is possible to notice that smaller values of ε
increase the time that the system spends at the active state before switching
to the repressed state, and viceversa. These results are in agreement with the
ones obtained by studing the analytical expression for the time to memory loss
of the repressed and active state (49).
Finally, concerning the reactivation time of this system (Fig. 4(e)), it is

possible to notice that the absence of repressive histone modifications, compared
to the case in which we do not have DNA methylation (large µ′ case), leads
to shorter reactivation time, unless µ′ is sufficiently small. However, even for
lower µ′ and then slower reactivation, the time needed to switch to the active
state is less variable compared to the previous case studies, suggesting that
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Fig 4. Computational analysis of the chromatin modification circuit,
shown in Fig. 1(b), for large µ, using SSA. (a) The stationary probability
distribution, π, for the chromatin modification circuit represented in Fig. 1(b), whose
reactions are listed in Fig. 1(a). The parameter values used to generate the plots are
in SI-Table S3. In particular, in the left-side plots ε = 0.16, 0.08, µ′ = 1, 0.185 and
ε′ = 1 and in the right-side plots ε = 0.1, 0.06, µ′ = 1, 0.15 and ε′ = 0.4. In all plots
nDA and nDR = nDR

1
+ nDR

2
+ nDR

12
represent the number of nucleosomes with

activating and repressive modifications. (b) The stationary distribution for the
chromatin modification circuit for different values of ε′. The parameter values
considered are listed in SI-Table S3. In particular, ε = 0.16 and ε′ = 1, 0.01. (c) Time
trajectories of nDA and nDR starting from the fully active state nDA = 50, nDR = 0
(left) and repressed state nDA = 0, nDR = nDR

12
= 50 (right) for ε′ = 1 and different

values of ε. (d) Time trajectories of nDA and nDR , as described in (c), but with
ε′ = 0.4. (e) Time trajectories of the system starting from
nDR = nDR

12
= 50, nDA = 0 and with an input uA that, at steady state, leads to a

unimodal distribution near the active state nDA ≈ 50. Each trajectory is represented
with a different color. In particular, we set ε = 0.16, ε′ = 1, and µ′ = 0.8, 0.38, 0.08.

In (c), (d) and (e), the time is normalized (τ = t
kA
M
Ω Dtot, with Ω the reaction

volume) and the parameter values are listed in SI-Table S3.

large µ, i.e., the absence of repressive histone modifications, could reduce the
stochasticity of gene reactivation.

Overall, similarly to what was obtained in the previous section, this analysis
shows that when repressive histone modifications are erased quickly enough that
their cooperation with DNA methylation becomes less effective, the duration
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of the repressed chromatin state memory decreases. However, in contrast to
what we obtained for the previous limiting case study, the reactivation process
of the system characterized by large µ is less stochastic compared to the
reactivation process of the full system (Fig. 2(e)). This result highlights that
repressive histone modifications contribute to the highly stochastic latency of
state reactivation.

5 Discussion and conclusion

In this work, we considered a chromatin modification circuit including both
histone modifications and DNA methylation [8] (Fig. 1(b)) to single out the
specific contributions of DNA methylation and histone modifications to the
duration of the active and repressed chromatin states memory. For this purpose,
we first proved that system (3), with ε′ as a small parameter, is singular
singularly perturbed and then exploited a proper reduction approach proposed
in [9] to obtain a one-dimensional model suitable for analytical study. We
performed this model reduction for the full chromatin modification system
(Section 4.1) and for two limiting cases: DNA methylation almost completely
absent (Section 4.2) and repressive histone modifications almost completely
absent (Section 4.3).
Our analysis showed that the coexistence and interaction between DNA

methylation and repressive histone modifications biases the system stationary
distribution towards the repressed stated and, accordingly, strengthens memory
of the repressed chromatin state (Fig. 2). When µ′ is large enough to have a
negligible amount of DNA methylation in the system and then the interplay
between repressive chromatin marks does not have a relevant effect on the
system dynamics (Fig. 1(c)), the bias in the stationary distribution and the
asymmetry between the active and repressed state memory are reduced (Fig.
3(a),(c),(d)). However, the latency of state reactivation remains highly stochas-
tic, especially for low µ (Fig. 3(e)). Different results can be obtained when µ is
large (repressive histone modifications almost completely absent). The reason
is that, not only the cooperative interactions among repressive modifications
can be neglected, but here the remaining repressive mark (DNA methylation)
does not have the positive feedback loop associated with the auto-catalytic
process (Fig. 1(d)). This implies that the state reactivation latency becomes
less stochastic (Fig. 4(e)).
These results suggest then the removal of repressive histone modifications

and of the positive feedback loops associated with the auto and cross-catalysis
could reduce the stochasticity associated with the reactivation of a silenced
gene, shown in earlier experimental studies [21]. As future work, we are planning
to develop theoretical tools to derive analytical expressions for stationary
distribution and times to memory loss for our original reaction system and then
to obtain a quantitative characterization of the original system. Furthermore, we
will also conduct experimental investigations in order to validate the theoretical
results obtained in this paper.
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Supplementary information. S1 File. Supporting information file with
derivation of the reduced model for the large µ case, and tables containing the
parameter values used to generate the plots in Figs 2 - 4.
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