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a b s t r a c t

In this work, the problem of estimating the state in systems with continuous and discrete variables is
considered. A cascade state estimator on a partial order is constructed and conditions for its existence are
provided. This work has two main contributions. First, it extends existing state estimation algorithms on
a partial order to estimate also the continuous variables. Second, it shows that the proposed construction
is general.
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1. Introduction

Hybrid system models have become increasingly popular
as a framework for describing discrete and continuous state
dynamics that characterize embedded systems. The problem of
state estimation arises as a means for control under partial
observation and as a means for fault diagnosis. Estimating
the values of non-measurable variables in hybrid systems with
reasonable computational effort is challenging. In the worst case,
the size of the set of possible current discrete states can grow
exponentially with the number of measurements due to the
coupling of continuous and discrete dynamics. We address this
computational challenge by proposing an alternative approach to
enumeration techniques, which exploits a partial order structure
on the set of continuous and discrete states. There is a wealth of
research on the problem of estimating the state of hybrid systems.
Bemporad et al. [3] propose a deadbeat observer for piecewise
affine systems, which requires large amounts of computation.
Balluchi et al. [2] combine a location observer with a Luenberger
observer. However, if the number of locations is large, as in the
systems that we consider, such an approach is impracticable.
In Alessandri et al., Luenberger-like observers are proposed for
hybrid systems, but the system location is known [1]. Özveren
et al. [7] and Caines [4] propose discrete event observers based on
the construction of the current-location observation tree, which
is impractical when the number of locations is large. The main
contribution of this work is a new approach to state estimation
that exploits partial order structures. The idea is the one of finding
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an alternative way to enumeration in order to represent the sets of
interest. This alternative way relies on representing sets by means
of lower and upper bounds in suitable partial orders. This approach
was first proposed in the author’s previous work [10], in which
only the discrete variables were estimated, while the continuous
variables were available for measurement. In the survey paper [9],
the results on state estimation on partial orders are summarized.
In this paper, this approach is extended to the case in which the
continuous variables also need to be estimated. We show that
the proposed approach is general as partial orders on which to
construct the estimator can always be found provided that the
system has observability properties. The computational load of the
estimator is highly dependent on the specific partial order chosen.
We thus show through examples what classes of systems allow
for partial order choices that lead to low computation estimators.
In Section 2, we introduce a multi-robot example to explain the
basic idea. In Section 3, we introduce basic notions on partial
orders and the system model. Section 4 formulates the state
estimation problem and gives a solution. In Section 5, the existence
of the estimator is investigated. In Section 6, we illustrate several
examples.

2. A multi-robot example

As an illustrative example, we consider a task that represents
a defensive maneuver for a robotic “capture the flag” game [5]. In
this example, as opposed to [10], the continuous variables are only
partially measured. Some number of blue robots with positions
(zi,1, 0) ∈ R2 (denoted by open circles) and with speeds (zi,2, 0) ∈

R2 must defend their zone {(x, y) ∈ R2
| y ≤ 0} from an equal

number of incoming red robots (denoted by filled circles). The
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Fig. 1. Example of the RoboFlag Drill with 8 robots per team. The dashed lines represent the assignment of each blue robot to red robot. The arrows denote the direction of
motion of each robot.
positions of the red robots are (xi, yi) ∈ R2 (Fig. 1). The red robots
move straight toward the blue robots’ defensive zone. The blue
robots are each assigned to a red robot, and they coordinate to
intercept the red robots. Let N represent the number of robots in
each team. The robots startwith an arbitrary (bijective) assignment
α : {1, . . . ,N} → {1, . . . ,N}, where αi is the red robot that
blue robot i is required to intercept. At each step, each blue robot
communicates with its neighbors and decides to either switch
assignments with its left or right neighbor or keep its assignment.
The RoboFlag Drill system can be specified by the following rules:
yi(k + 1) = yi(k) − δ if yi(k) ≥ δ and

z′i,1 = (1 − β)zi,1 − βzi,2 + 2βxαi (1)

z′i,2 = (1 − λ)zi,2 + λxαi (2)
(αi(k + 1),αi+1(k + 1)) = (αi+1(k),αi(k))

if xαi(k) ≥ zi+1,1(k) ∧ xαi+1(k) ≤ zi+1,1(k), (3)

where we assume that xi < zi,1(k) < xi+1 and xi < zi,2(k) < xi+1
for all i and all k, which is guaranteed if β and λ are sufficiently
small. This implies that each defendermoves toward the x position
of the assigned attacker with second order damped dynamics. Eq.
(3) establishes that two robots trade their assignments if the cur-
rent assignments cause them to go toward each other. Given the
evolution of the measurable quantities zi,1, xi, and yi for all i, can
we build an estimator that tracks on-line the value of the assign-
ment α(k) and of the robots speeds zi,2(k) for all k? The value of
α ∈ perm(N) determines the discrete state. The number of pos-
sible discrete states is N!. This renders prohibitive the application
of observers based on the current-location observation tree [4,2,
7]. Consider the situation depicted in Fig. 1(left) where N = 8.
We see the blue robots 1, 3, 5 going right and the others going
left. From Eq. (1)–(2) with xi < zi,1 < xi+1 and xi < zi,2 < xi+1
we deduce that the set of all possible α ∈ perm(N) compatible
with this observation is such that αi ≥ i + 1 for i ∈ {1, 3, 5}

and αi ≤ i for i ∈ {2, 4, 6, 7, 8}. According to enumeration meth-
ods, this set needs to be mapped forward through the dynamics of
the system. Such a set is then intersected with the set of α values
compatible with the new observation. For each possible discrete
state, a continuous state estimatormust be run to estimate the con-
tinuous variable corresponding to the discrete state. To overcome
the complexity issue that comes from the need of listing order of
N! elements, we propose to represent a set by a lower L and an
upper U elements according to some partial order. Then, we can
perform the previously described operations only on L and U, two
elements instead of N!. For this example, we can view α ∈ NN .
The set of possible assignments compatible with the observa-
tion of the z motion deduced from Eqs. (1) and (2), denoted
Oy(k), can be represented as the interval [(2, 1, 4, 1, 6, 1, 1, 1),
(8, 2, 8, 4, 8, 6, 7, 8)] with the order established component-wise.
The function f̃ that maps such a set forward, specified by Eq. (3)
with the assumption that xi < zi,1 < xi+1, simply swaps two adja-
cent robot assignments if these cause the two robots to move to-
ward each other. Thus, it maps the set Oy(k) to the set f̃ (Oy(k)) =

[(1, 2, 1, 4, 1, 6, 1, 1), (2, 8, 4, 8, 6, 8, 7, 8)]. When the new out-
put measurement becomes available (Fig. 1(right)) we obtain the
new set Oy(k + 1) = [(1, 1, 1, 5, 1, 7, 1, 1), (1, 2, 3, 8, 5, 8, 7, 8)].
The sets f̃ (Oy(k)) and Oy(k + 1) can be intersected by simply com-
puting the supremum of their lower bounds and the infimum of
their upper bounds to obtain [(1, 2, 1, 5, 1, 7, 1, 1), (1, 2, 3, 8, 5,
8, 7, 8)]. This way, we obtain the system that updates L and U,
L and U being the lower and upper bounds of the set of all
possible α compatible with the output sequence: L(k + 1) =

f̃
(
sup(L(k), inf Oy(k))

)
, U(k + 1) = f̃

(
inf(U(k), supOy(k))

)
. The

computational burden of this implementation is of the order of
N. This computational burden is to be compared to N!, which is
the computation requirement that we have with the enumera-
tion approach. Once we have an interval in which the discrete
state exists, we can determine the interval in which the contin-
uous state z2 = (z1,2, . . . , zN,2) exists. Let z1 = (z1,1, . . . , zN,1)
be the vector of positions. For a pair of consecutive measure-
ments z1(k), z1(k + 1) and for α(k) ∈ [L∗(k),U∗(k)] with L∗(k) =

sup(L(k), inf Oy(k)) and U∗(k) = inf(U(k), supOy(k)), we have that
z2 is also in an interval (using component-wise ordering), which
is induced by the interval [L∗(k),U∗(k)]. We denote such an in-
terval induced by [L∗(k),U∗(k)] as I[L

∗(k),U∗(k)]
z1(k),z1(k+1). This induced in-

terval represents the set of all possible continuous variables z2
that are compatible with observations z1(k) and z1(k + 1) and
with a discrete state in the interval [L∗(k),U∗(k)]. The ends of
this induced interval can be easily computed by Eq. (1). In fact,
the map that attaches to a value α ∈ NN the values zi,2 for a
pair of consecutive observations z1(k), z1(k + 1) is given for all i
by αi →

1
β

(
(1 − β)z1,i(k) − z1,i(k + 1) + 2βxαi

)
. If we denote by

Mz1(k),z1(k+1)(α) the map that attaches to α, the value of z2 for a
given pair of consecutive observations z1(k), z1(k + 1), we obtain
Mz1(k),z1(k+1)(α) =

1
β
(
(
(1 − β)z1,1(k) − z1,1(k + 1) + 2βxα1

)
, . . . ,

((1 − β)zN,1(k) − zN,1(k + 1) + 2βxαN )). The ends of the induced
interval are thus given by inf I[L

∗(k),U∗(k)]
z1(k),z1(k+1) = Mz1(k),z1(k+1)(L∗(k)) and

sup I[L
∗(k),U∗(k)]

z1(k),z1(k+1) = Mz1(k),z1(k+1)(U∗(k)). The lower and upper bounds
of the set of possible z2 values, which we call zL and zU , can be
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updated by:

zL(k + 1) = h̃2
(
sup(zL(k), inf I

[L∗(k),U∗(k)]
z1(k),z1(k+1)), L

∗(k)
)
,

zU(k + 1) = h̃2
(
inf(zU(k), sup I[L

∗(k),U∗(k)]
z1(k),z1(k+1)),U

∗(k)
)
,

(4)

in which h̃2 is the function that updates the variables z2 as given
in Eq. (2). In this paper, this construction is made general by
employing partial order theory.

3. Basic notions

A partial order [6] is a setχwith a partial order relation “≤”, and
it is denoted (χ,≤). The join “g” and themeet “f” of two elements
x and w in χ are defined as xgw = sup{x,w} and xfw = inf{x,w},
if S ⊆ χ,

∨
S = sup S and

∧
S = inf S, where sup{x,w} denotes the

smallest element in χ that is larger than both x andw, and inf{x,w}

denotes the largest element in χ that is smaller than both x and
w. If x < w and there is no other element in between x and w,
we write x � w. Let (χ,≤) be a partial order. If x f w ∈ χ and
x g w ∈ χ for all x,w ∈ χ, then (χ,≤) is a lattice. Let (χ,≤) be
a lattice and let S ⊆ χ be a non-empty subset of χ. Then (S,≤) is
a sublattice of χ if a, b ∈ S implies that a g b ∈ S and a f b ∈ S.
If all sublattices of χ contain their least and greatest elements,
then (χ,≤) is called complete. Given a complete lattice (χ,≤), we
are concerned with a special kind of a sublattice called an interval
sublattice defined as follows. Any interval sublattice of (χ,≤) is
given by [L,U] = {w ∈ χ | L ≤ w ≤ U} for L,U ∈ χ. That is,
this special sublattice can be represented by only two elements.
The cardinality of an interval sublattice [L,U] is denoted |[L,U]|. The
power lattice of a set U, denoted (P (U),⊆), is given by the power
set ofU,P (U) (the set of all subsets ofU), ordered according to the
set inclusion ⊆. Themeet and join of the power lattice are given by
intersection and union. The bottom element is the empty set, that
is ⊥ = ∅, and the top element is U itself, that is > = U. Let (P,≤)
and (Q,≤) be partially ordered sets. A map f : P → Q is (i) an order
preservingmap if x ≤ w ⇒ f (x) ≤ f (w); (ii) an order embeddingmap
if x ≤ w ⇐⇒ f (x) ≤ f (w); (iii) an order isomorphism if it is order
embedding and it maps P onto Q .

Definition 3.1 (Distance on a Partial Order). Let (P,≤) be a partial
order. A distance d on (P,≤) is a function d : P × P → R such that
the following properties are satisfied: (i) d(x, y) ≥ 0 for all x, y ∈ P
and d(x, y) = 0 if and only if x = y; (ii) d(x, y) = d(y, x); (iii) if
x ≤ y ≤ z then d(x, y) ≤ d(x, z); (iv) d(x, z) ≤ d(x, y) + d(y, z)
(triangular inequality).

Note that any function d that satisfies the items in Definition 3.1
is a distance function. So, the distance function on a partial order
is not unique. Let (P1,≤) and (P2,≤) be two partial orders. Their
Cartesian product is given by (P1 × P2,≤), where P1 × P2 = {(x, y) |

x ∈ P1 and y ∈ P2} and (x, y) ≤ (x′, y′) if and only if x ≤

x′ and y ≤ y′. For all (p1, p2) ∈ P1 × P2 the standard projections
π1 : P1×P2 → P1 andπ2 : P1×P2 → P2 are such thatπ1(p1, p2) = p1
and π2(p1, p2) = p2. Let P1 and P2 be two sets with P1 ⊆ P2 and
(P2,≤) a partial order. For all x ∈ P2, we define the lower and upper
approximations of x in P1 as aL(x) := max(P2,≤){w ∈ P1 | w ≤ x}
and aU(x) := min(P2,≤){w ∈ P1 | w ≥ x}. If such lower and upper
approximations exist for all x ∈ P2, then the partial order (P2,≤)
is said to be closed with respect to P1. One can verify that the lower
and upper approximation functions are order preserving.

A deterministic transition system (DTS) is a tupleΣ = (S,Y, F, g),
where (i) S is a set of states with s ∈ S; (ii) Y is a set of outputs
with y ∈ Y; (iii) F : S → S is the state transition function; (iv)
g : S → Y is the output function. An execution of a deterministic
transition system Σ is all sequence σ = {s(k)}k∈N such that s(0) ∈ S
and s(k + 1) = F(s(k)) for all k ∈ N. The set of all executions of Σ is
denoted E(Σ). An output sequence of the system Σ corresponding
to an execution σ is denoted {y(k)}k∈N and it is such that y(k) =

g(s(k)). The deterministic transition system Σ = (S,Y, F, g) is said
to be observable if any two different executions σ1,σ2 ∈ E(Σ) are
such that there exists a k such that g(σ1(k)) 6= g(σ2(k)). It is useful
to define also systems with inputs and their interconnections.
We define two types of interconnection: feedback interconnection
and cascade interconnection. A deterministic transition system with
input is the tuple Σ = (S,I,Y, F, g), where (i) S is a set of
states with s ∈ S; (ii) I is a set of inputs; (iii) Y is a set of
outputs with y ∈ Y; (iv) F : S × I → S is the state transition
function; (v) g : S × I → Y is the output function. Consider
the two systems with inputs Σ1 = (S1,I1,Y1, F1, g1) and Σ2 =

(S2,I2,Y2, F2, g2), in which I1 = Y2, I2 = Y1, and g1 :

S1 → Y1. The feedback interconnection of Σ1 with Σ2, denoted by
Σ1 ◦f Σ2, is the deterministic transition system given byΣ1 ◦f Σ2 :=

(S1 × S2,Y2, (F
′

1, F
′

2), g
′

2), in which for all s1 ∈ S1 and s2 ∈

S2, we have F′

1(s1, s2) = F1(s1, g2(s2, g1(s1))), F′

2(s1, s2) =

F2(s2, g1(s1)), and g′

2(s1, s2) = g2(s2, g1(s1)). The output of the
feedback interconnection Σ1 ◦f Σ2 is the output of Σ2. Consider
the two systems with inputs Σ1 = (S1,I1,Y1, F1, g1) and Σ2 =

(S2,I2,Y2, F2, g2), in which I2 = Y1. The cascade interconnection
of Σ1 and Σ2, denoted Σ1 ◦c Σ2, is the deterministic system with
input given by Σ1 ◦c Σ2 := (S1 × S2,I1,Y2, (F

′

1, F
′

2), g
′

2), in which
for all s1 ∈ S1, s2 ∈ S2, and u1 ∈ I1 we have that F′

1(s1, s2, u1) =

F1(s1, u1), F′

2(s1, s2, u1) = F2(s2, g1(s1, u1)), and g′

2(s1, s2, u1) =

g2(s2, g1(s1, u1)). LetU be a finite discrete set,Z an infinite possibly
dense set, and Y a finite or infinite set. In this paper, we consider
systems of the form Σ = Σ1 ◦f Σ2, in which Σ1 = (U,Y,U, f , id)
and Σ2 = (Z,U,Y, h, g), with g : Z × U → Y, f : U ×

Y → U, h : Z × U → Z. Then, we have that Σ1 ◦f Σ2 =

(U × Z,Y, (f ′, h′), g′), in which for all α, z ∈ U × Z we have that
f ′(α, z) = f (α, g(z,α)), h′(α, z) = h(z,α), and g′(α, z) = g(z,α). We
attach to Σ = Σ1 ◦f Σ2, the following difference equations α(k +

1) = f (α(k), y(k)), z(k + 1) = h(z(k),α(k)), y(k) = g(z(k),α(k)).
In the following, we denote by σ(z)(k) and by σ(α)(k) the values
of the variables z and α along the execution σ, respectively. We
next define the set of all possible discrete variable values that are
compatible with two consecutive output measurements. The sets
Ty1,y2(Σ) = {α ∈ U | ∃ z ∈ Z such that y1 = g(z,α) and y2 =

g(h(z,α), f (α, y1))} with y1, y2 ∈ Y are the Σ-transition sets. We
denote the property of the system Σ that allows us to distinguish
two different initial values of the variables α independently of the
continuous state by independent discrete state observability. The
system Σ is said to be independently discrete state observable if for
all output sequences {y(k)}k∈N, we have that for any two executions
σ1,σ2 ∈ E(Σ) such that {σ1(k)(α)}k∈N 6= {σ2(k)(α)}k∈N, there
is k > 0 such that σ1(k)(α) ∈ Ty(k),y(k+1)(Σ) and σ2(k)(α) 6∈

Ty(k),y(k+1)(Σ). This property basically states that an independently
discrete state observable system is such that any two executions
with different discrete state sequences cannot have the same
output sequence, that is, at some point σ1(k)(α) is compatible
with the output pair y(k), y(k + 1) (σ1(k)(α) ∈ Ty(k),y(k+1)(Σ)), but
σ2(k)(α) is not (σ2(k)(α) 6∈ Ty(k),y(k+1)(Σ)). This property allows us
to construct a discrete-continuous state estimator that is a cascade
interconnection of a discrete state estimator as the one in [10], and
a continuous state estimator.

4. Problem statement and solution

Consider the deterministic transition systemΣ = Σ1 ◦f Σ2, with
output sequence {y(k)}k∈N. From the measurement of the output
sequence,wewant to construct a cascade state estimator: A system
Σ̂ = Σ̂1 ◦c Σ̂2, in which Σ̂1 takes as input the values of the output
of Σ and asymptotically tracks the value of the variables α, while
Σ̂2 takes as input the discrete state estimates and asymptotically
tracks the value of z.
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Problem 1 (Cascade State Estimator). Given the deterministic
transition system Σ = Σ1 ◦f Σ2, in which Σ1 = (U,Y,U, f , id)
and Σ2 = (Z,U,Y, h, g), determine the cascade interconnection
Σ̂ = Σ̂1 ◦c Σ̂2, in which Σ̂1 = (χ×χ,Y ×Y,χ×χ, (f1, f2), id) with
f1 : χ×Y×Y → χ, f2 : χ×Y×Y → χ, Σ̂2 = (L×L,χ×χ×Y×

Y,χ×χZE ×ZE, (f3, f4), (g1, g2))with f3 : L×χ×χ×Y×Y → L,
f4 : L × χ × χ × Y × Y → L, g1 : χ → χ, g2 : χ → χ, with
g1 = g2 = id, g3 : L → ZE, and g4 : L → ZE, with U ⊆ χ, (χ,≤)
a lattice, Z ⊆ ZE with (ZE,≤) a lattice, χ × ZE ⊆ L with (L,≤) a
lattice, such that for all executions σ = {(α(k), z(k))}k∈N of Σ with
output sequence {y(k)}k∈N the update laws

L(k + 1) = f1(L(k), y(k), y(k + 1)),
U(k + 1) = f2(U(k), y(k), y(k + 1)),
qL(k + 1) = f3(qL(k), L(k),U(k), y(k), y(k + 1)), (5)
qU(k + 1) = f4(qU(k), L(k),U(k), y(k), y(k + 1)),

with zL(k) = g3(qL(k)), and zU(k) = g4(qU(k)), in which L(0) :=
∧

χ,
U(0) :=

∨
χ, qL(0) =

∧
L, qU(0) =

∨
L, have the following

properties

(i) L(k) ≤ α(k) ≤ U(k) (correctness);
(ii) |[L(k + 1),U(k + 1)]| ≤ |[L(k),U(k)]| (non-increasing error);
(iii) there exists k0 > 0 such that [L(k),U(k)] ∩ U = α(k) for all

k ≥ k0 (convergence);
(i′) zL(k) ≤ z(k) ≤ zU(k) (correctness);
(ii′) d(zL(k), zU(k)) ≤ γ(|[L(k),U(k)]|), with γ a monotonically

increasing function of its argument (non-increasing error);
(iii′) there exists k′

0 > 0 such that d(zL′(k), zU′(k)) = 0 for all k ≥ k′

0
(convergence), where L′(k) =

∧
([L(k),U(k)] ∩ U), U′(k) =∨

([L(k),U(k)] ∩ U), qL′(k + 1) = f3(qL′(k), L′(k),U′(k), y(k),
y(k + 1)), qU′(k + 1) = f4(qU′(k), L′(k),U′(k), y(k), y(k + 1)),
and

zL′(k) =
∧

g3 ([qL′(k), qU′(k)] ∩ (U × Z)) (6)

zU′(k) =
∨

g4 ([qL′(k), qU′(k)] ∩ (U × Z)) (7)

with qL′(0) = qL(0) and qU′(0) = qU(0), for some distance
function “d.”

Properties (i′)–(iii′) are the same as the properties (i)–(iii) but for
the continuous state estimate. The variables L and U represent the
lower and upper bounds in (χ,≤) of the set of all possible discrete
variable values α that are compatible with the output sequence
and with the discrete state system dynamics given by Σ1. The
variables zL and zU instead represent the lower and upper bounds
in (ZE,≤) of the set of all possible continuous variable values
that are compatible with the output sequence, with the system
dynamics established by Σ , and with the set of possible discrete
variable values. The variables qL and qU are auxiliary variables that
are needed to model the coupling of the continuous and discrete
state dynamics. They represent the lower and upper bounds in
the mixed discrete-continuous partial order (L,≤) of the set of
all possible pairs (α, z) compatible with the output sequence, with
the system dynamics, and with the set of possible discrete variable
values. The distance function “d” has been left unspecified for
the moment and can be any function that satisfies the items of
Definition 3.1. As we performed in the example in Section 2, in
order to construct an estimator that keeps track of lower and upper
bounds of the state variables, the state variables of the systemhave
to be viewed as belonging to a partial order. We thus introduce the
notion of extension of a system Σ to a partial order.

Definition 4.1. Consider the system Σ = Σ1 ◦f Σ2 with Σ1 =

(U,Y,U, f , id1) and Σ2 = (Z,U,Y, h, g). Let (χ,≤), (ZE,≤), and
(L,≤) be partial orders with U ⊆ χ, Z ⊆ ZE, and χ × ZE ⊆ L.
The system extension is defined as Σ̃ = (L,Y, F̃, G̃), in which (i)
F̃ : L → Lwith F̃|U×Z = (f ′, h′) andL−(U×Z) is invariant under
F̃; (ii) G̃ : L → Y with G̃|U×Z = g′; (iii) Σ̃ |χ×ZE = Σ̃1 ◦f Σ̃2, in which
Σ̃1 = (χ,Y,χ, f̃ , id1) and Σ̃2 = (ZE,χ,Y, h̃, g̃), with f̃ |U×Y = f ,
h̃|Z×U = h, and g̃|Z×U = g; (iv) the partial order (L,≤) is closed
with respect to χ × ZE.

Let Σ̃ = (L,Y, F̃, G̃) be the extension ofΣ on the lattice (L,≤). For
all y1, y2 ∈ Y, the sets Ty1,y2(Σ̃) = {w ∈ χ | ∃ z ∈ Z such that y2 =

G̃(F̃(w, z)) and y1 = G̃(w, z)} are named the Σ̃-transition sets. The
Σ̃-transition sets correspond to the set of all possible values ofw ∈

χ compatiblewith two consecutive outputs of the extended system
Σ̃ . The output set denoted Oy(k) is a transition set corresponding
to two consecutive output measurements (y(k), y(k + 1)) of Σ̃

along an execution of Σ̃ with output sequence {y(k)}k∈N. That is,
Oy(k) := Ty(k),y(k+1)(Σ̃). The next definition introduces the notion
of interval compatibility of the tuple (Σ̃1, Σ̃, (χ,≤)).

Definition 4.2. The tuple (Σ̃, Σ̃1, (χ,≤)) is said to be interval
compatible if for all y1, y2 ∈ Y, we have that (i) the Σ̃-transition
sets are intervals, i.e., Ty1,y2(Σ̃) = [

∧
Ty1,y2(Σ̃),

∨
Ty1,y2(Σ̃)]; (ii) f̃ :

(Ty1,y2(Σ̃), y1) → [f̃ (
∧
Ty1,y2(Σ̃), y1), f̃ (

∨
Ty1,y2(Σ̃), y1)] is an order

isomorphism.

This property requires that a Σ̃-transition set is a sublattice interval
in the lattice (χ,≤) and that the extension Σ̃1 is such that f̃ is an
order isomorphism on such a set. In order to determine the set of
variable values in L of the extended system that are compatible
with an output pair y1, y2 and with a set of possible discrete
variable values [w1,w2] ⊆ Ty1,y2(Σ̃), we introduce the notion of
induced output set. Consider the system Σ̃ = (L,Y, F̃, G̃) and
a transition set Ty1,y2(Σ̃) for some y1, y2 ∈ Y. For all w1,w2 ∈

Ty1,y2(Σ̃) with w1 ≤ w2, the sets I[w1,w2]

y1,y2 = {q ∈ L | π1 ◦ aL(q) ≥

w1,π1 ◦ aU(q) ≤ w2, y2 = G̃(F̃(q)), and y1 = G̃(q)} are named the
induced output sets of Σ̃ induced by an interval [w1,w2] ⊆ Ty1,y2(Σ̃).
The meaning of an induced output set is the following. The set
I[w1,w2]

y1,y2 is the set of all possible values of q ∈ L that are compatible
with two output measurements y1, y2 andwhose upper and lower
approximations in χ × ZE have the discrete component contained
in the set [w1,w2]. One can easily verify that if [w1,w2] ⊆ Ty1,y2(Σ̃),
then {(α, z) | g(z,α) = y1 and g(h(z,α), f (α, y1)) = y2} with
α ∈ [w1,w2] is contained in I[w1,w2]

y1,y2 . Next, a definition similar to
interval compatibility is introduced for the induced output sets and
the system extension Σ̃ .

Definition 4.3. The pair (Σ̃, (L,≤)) is said to be induced interval
compatible if for any [w1,w2] ⊆ Ty1,y2(Σ̃) for y1, y2 ∈ Y, we have
that (i) F̃ : ([

∧
I[w1,w2]

y1,y2 ,
∨

I[w1,w2]

y1,y2 ]) → [F̃(
∧

I[w1,w2]

y1,y2 ), F̃(
∨

I[w1,w2]

y1,y2 )]
is order preserving; (ii) F̃ : ([

∧
I[α,α]

y1,y2
,
∨

I[α,α]

y1,y2
]) → [F̃(

∧
I[α,α]

y1,y2
),

F̃(
∨

I[α,α]

y1,y2
)] is an order isomorphism; (iii) for all [w1,w2] ⊆

Ty1,y2(Σ̃), we have that d
(
π2 ◦ aL ◦ F̃(

∧
I[w1,w2]

y1,y2 ),π2 ◦ aU◦

F̃(
∨

I[w1,w2]

y1,y2 )
)

≤ γ(|[w1,w2]|), for some distance function “d”, and
γ : N→ R a monotonically increasing function of its argument.

The function d is any function that satisfies the items of
Definition 3.1. Item (i) of this definition requires that the extended
function F̃ has order preserving properties on the induced output
sets. Item (ii) requires the stronger property of order isomorphism
when the interval towhich the discrete state belongs is a singleton.
This property is stronger than order preserving because it also
requires that F̃ is onto on the indicated codomain. This property
is necessary to prove the convergence of the continuous state
estimator. Item (iii) establishes that the distance between the
lower and upper bounds of the interval sublattice in (ZE,≤)
induced by an interval [w1,w2] ∈ χ is bounded by a monotonic
function of the cardinality of [w1,w2]. When (y1, y2) = (y(k), y(k+

1)) in the above definitions, in which {y(k)}k∈N is an output
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sequence of Σ , we use the notation (y(k), y(k + 1)) := Y(k) so
that I[w1,w2]

y(k),y(k+1) = I[w1,w2]

Y(k) . A solution to Problem 1 is determined on
the basis of two intermediate results. The first result establishes
that when the tuple (Σ̃, Σ̃1, (χ,≤)) is interval compatible, under
the assumption of independent discrete state observability it is
possible to construct a convergent discrete state estimator Σ̂1.
The second result establishes that under the induced interval
compatibility assumption and given a convergent discrete state
estimator, it is possible to construct a convergent continuous state
estimator Σ̂2 that is driven by the discrete state estimates.

Lemma 4.1. Let {y(k)}k∈N be the output sequence of an execution
of Σ . Consider the system with input Σ̂1 = (χ × χ,Y × Y,χ ×

χ, (f1, f2), id) with f1 : χ × Y × Y → χ, f2 : χ × Y × Y →

χ given by f1(L(k), y(k), y(k + 1)) = f̃
(∧

Oy(k) g L(k), y(k)
)
and

f2(U(k), y(k), y(k + 1)) = f̃
(∨

Oy(k) f U(k), y(k)
)
, with L(0) =∧

χ and U(0) =
∨

χ. If system Σ is independently discrete state
observable and the tuple (Σ̃1, Σ̃, (χ,≤)) is interval compatible, then
L(k) and U(k) have properties (i)– (iii) of Problem 1.

The proof of (i) relies on the order preserving property of f̃ . The
proof of (ii) exploits the order isomorphism property of f̃ on the
output set. The proof of (iii) relies on the independent discrete state
observability assumption. For the details, the reader is referred
to [10].

Lemma 4.2. Let {y(k)}k∈N be an output sequence of Σ . Let Σ̂1 be as in
Lemma 4.1 and let the hypotheses of Lemma 4.1 be satisfied. Consider
the system with input Σ̂2 = (L × L,χ × χ × Y × Y,χ × χ × ZE ×

ZE, (f3, f4), (g1, g2, g3, g4)) with f3 : L × χ × χ × Y × Y → L,
f4 : L × χ × χ × Y × Y → L, g3 : L → ZE, and g4 : L → ZE given
by

f3(qL(k), L(k),U(k), y(k), y(k + 1)) = F̃
(
qL(k) g

∧
I[L

∗(k),U∗(k)]
Y(k)

)
f4(qU(k), L(k),U(k), y(k), y(k + 1)) = F̃

(
qU(k) f

∨
I[L

∗(k),U∗(k)]
Y(k)

)
g3(qL(k)) = π2 ◦ aL(qL(k)), g4(qU(k)) = π2 ◦ aU(qU(k)) (8)

in which L(k),U(k), y(k), y(k + 1) is the output of Σ̂1, L∗(k) =∧
Oy(k)gL(k), and U∗(k) =

∨
Oy(k)fU(k). If (Σ̃, (L,≤)) is induced

interval compatible and Σ is observable, then zL(k) = g3(qL(k)) and
zU(k) = g4(qU(k)) have properties (i′)–(iii′) of Problem 1.

Proof. The proof of (i′) exploits the order preserving properties of
F̃, aL, aU , and ofπ2. The proof of (ii′) exploits the property of induced
order compatibility and the definition of distance on apartial order.
The proof of (iii′) uses directly the observability of system Σ .

Proof of (i′). We use induction argument on k. Initially, qL(0) =∧
L and qU(0) =

∨
L. Therefore we have that qL(0) ≤

(α(0), z(0)) ≤ qU(0). Next, we show that qL(k) ≤ (α(k), z(k)) ≤

qU(k) implies qL(k + 1) ≤ (α(k + 1), z(k + 1)) ≤ qU(k + 1). Since
α(k) ∈ [L∗(k),U∗(k)] ⊆ Ty(k),y(k+1)(Σ̃) and (α(k), z(k)) ∈ {(α, z) |

g(z,α) = y(k) and g(h(z,α), f (α, y(k))) = y(k + 1)} we have that
(α(k), z(k)) ∈ I[L

∗(k),U∗(k)]
Y(k) . Removing the dependency of L∗,U∗ and

Y on k, we obtain that qL(k) g
∧

I[L
∗,U∗

]

Y ≤ (α(k), z(k)) ≤ qU(k) f∨
I[L

∗,U∗
]

Y . Since F̃ is order preserving on I[L
∗,U∗

]

Y , we also have that
F̃

(
qL(k) g

∧
I[L

∗,U∗
]

Y

)
≤ (α(k + 1), z(k + 1)) ≤ F̃

(
qU(k) f

∨
I[L

∗,U∗
]

Y

)
.

We are left to show that qL(k) ≤ (α(k), z(k)) ((α(k), z(k)) ≥ qL(k))
implies that π2 ◦ aL(qL(k)) ≤ z(k) (π2 ◦ aU(qL(k)) ≥ z(k)). This
is true as π2 ◦ aL (π2 ◦ aU) is an order preserving map and π2 ◦

aL(α(k), z(k)) = z(k) (π2 ◦ aU(α(k), z(k)) = z(k)).
Proof of (ii′). Since F̃ is order preserving on the induced tran-

sition sets, we have that F̃(
∧

I[L
∗,U∗

]

Y ) ≤ F̃(qL(k) g
∧

I[L∗,U
∗
]

Y )

(F̃(
∨

I[L
∗,U∗

]

Y ) ≥ F̃(qU(k) f
∨

I[L∗,U
∗
]

Y )). Since π2 ◦ aL and π2 ◦ aU are
also order preserving, by using property (iii) of the distance func-
tion, we have that d(π2 ◦ aL ◦ F̃(qL(k)g

∧
I[L

∗,U∗
]

Y ),π2 ◦ aU ◦ F̃(qU(k)f
∨
I[L

∗,U∗
]

Y )) ≤ d(π2 ◦ aL ◦ F̃(
∧

I[L
∗,U∗

]

Y ),π2 ◦ aU ◦ F̃(
∨

I[L
∗,U∗

]

Y )). By prop-
erty (iii) of Definition 4.3, we have that d(π2◦aL◦F̃(

∧
I[L

∗,U∗
]

Y ),π2◦aU
◦F̃(

∨
I[L

∗,U∗
]

Y )) ≤ γ([L∗,U∗
]). Since f̃ ([L∗,U∗

], y) ⊆ [f̃ (L∗, y), f̃ (U∗, y)],
f̃ (L∗(k), y(k)) = L(k+ 1), and f̃ (U∗(k), y(k)) = U(k+ 1), we have by
the order isomorphism property of f̃ that |f̃ ([L∗(k),U∗(k)], y(k))| =

|[L∗(k),U∗(k)]| ≤ |[L(k + 1),U(k + 1)]|. Since γ is a mono-
tonically increasing function of its argument, we have that
γ(|[L∗(k),U∗(k)]|) ≤ γ(|[L(k + 1),U(k + 1)]|).

Proof of (iii′). For k > k0, L′(k) = α(k) = U′(k) because
[L(k),U(k)] ∩ U = α(k). As a consequence, qL′(k + 1) = F̃(qL′(k) g∧

I[α(k),α(k)]
Y(k) ) and qU′(k + 1) = F̃(qU′(k) f

∨
I[α(k),α(k)]
Y(k) ). By property

(ii) of Definition 4.3, it follows that for all k > k0 we have that for
all q′

∈ [qL′(k + 1), qU′(k + 1)] there is q ∈ [qL′(k), qU′(k)] such that
q′

= F̃(q). Also,L−(U×Z) is invariant under F̃ and F̃|U×Z = (f ′, h′),
Therefore, it is also true that for all (α′, z′) ∈ [qL′(k + 1), qU′(k +

1)] ∩ (U × Z) there is (α, z) ∈ [qL(k), qU(k)] ∩ (U × Z) such that
(α′, z′) = (f (α, y(k)), h(z,α)). In addition, we have that such (α, z)

is in the induced transition set, that is, (α, z) ∈ I[α(k),α(k)]
Y(k) . This in

turn implies that g(z,α) = y(k). This is true for all k ≥ k0. But, if
for all k ≥ k0 the set [q′

L(k), q
′

U(k)] ∩ (U × Z) contains more than
one element, it means that there are at least two executions of Σ ,
σ1 6= σ2, such that g(σ1) = g(σ2). This contradicts observability of
Σ . Thus, itmust be that there is k′

0 > k0 such that for k ≥ k′

0 wehave
that [q′

L(k), q
′

U(k)] ∩ (U × Z) = (α(k), z(k)). As a consequence, by
virtue of Eq. (8) we also have that zL′(k) = zU′(k) for all k ≥ k′

0. �

The proof of the convergence of the continuous state estimate
relies on the fact that the function F̃ is an order isomorphism. If the
extended function F̃ is not an order isomorphism, the convergence
of the continuous state cannot be guaranteed. While the proof of
the convergence of the continuous state estimates relies on the
convergence of the discrete state estimates, it is not necessary
that the continuous state estimate awaits the convergence of the
discrete state estimate before it can converge. The discrete and
continuous state estimates can converge at the same time. This is
due to the fact that the estimation strategy (both for the continuous
and discrete states) relies on a prediction-correction approach. Due
to this approach, the error on the continuous variable estimates
can be rendered smaller at each step. The following theorem is a
consequence of Lemmas 4.1 and 4.2.

Theorem 4.1. The cascade interconnection Σ̂ = Σ̂1 ◦c Σ̂2, where Σ̂1
is as in Lemma 4.1 and Σ̂2 is as in Lemma 4.2, solves Problem 1.

We next study a class of systems in which there is a partial
order on Z, the cone partial order, that is preserved by the system
dynamics. In this case, we can chooseZE = Z, with (Z,≤) a partial
order, and (L,≤) = (χ × Z,≤). An ordered Banach space [11] is
a real Banach space Z with a non-empty closed subset K known
as the positive cone with the following properties: (i) αK ⊆ K for
all α ∈ R+; (ii) K + K ⊆ K; (iii) K ∩ (−K) = {∅}, i.e., the cone is
pointed. A partial ordering is then defined by x ≥ y for all x, y ∈ Z
if and only if x − y ∈ K, with x > y if and only if x ≥ y and
x 6= y. The resulting partial order is denoted (Z,≤). If condition
(iii) is not satisfied, we simply refer to (Z,≤) as an ordered space.
Let again Σ = Σ1 ◦f Σ2, in which Σ1 = (U,Y,U, f , id) and
Σ2 = (Z,U,Y, h, g) with (Z,≤) an ordered space. Let (χ,≤)
be a lattice and consider the extension Σ̃ = Σ̃1 ◦f Σ̃2, in which
Σ̃1 = (χ,Y,χ, f̃ , id) and Σ̃2 = (Z,χ,Y, h̃, g̃), with f̃ : χ ×

Y → χ and f̃ |U×Y = f ; h̃ : Z × χ → Z with h̃|Z×U = h;
g̃ : Z × χ → Y and g̃|Z×U = g. Then, we say that Σ is a monotone
deterministic transition system if there is a lattice (χ,≤)withU ⊆ χ
and a system extension Σ̃ = Σ̃1 ◦f Σ̃2 on (χ × Z,≤) such that
h̃ is order preserving. Such an extension Σ̃ is called a monotone
extension of Σ on χ × Z. For a monotone deterministic transition
system, the ordered space (Z,≤) can be used in the estimator



D. Del Vecchio / Systems & Control Letters 57 (2008) 842–850 847
design to reduce the computational burden, as the elements of Z
are points, and their order relation can be efficiently computed
by using the definition of (Z,≤). In the following, we assume
that (Z,≤) in an ordered Banach space unless otherwise stated.
For a monotone transition system, we can re-define the induced
output sets to contain only the continuous component of the state,
that is, for all y1, y2 ∈ Y and w1 ≤ w2 ∈ Ty1,y2(Σ̃) we define
I[w1,w2]

y1,y2 := {z ∈ Z | y1 = g̃(z,w), y2 = g̃(h̃(z,w), f̃ (w, y1)),w ∈

[w1,w2]}. In addition, the induced order compatibility definition
is defined only on the basis of the properties of h̃. This implies
that items (i)–(iii) of Definition 4.3 take the form: (i) h̃ :

I[w1,w2]

y1,y2 × [w1,w2] → [h̃(
∧

I[w1,w2]

y1,y2 ,w1), h̃(
∨

I[w1,w2]

y1,y2 ,w2)] is order
preserving; (ii) h̃ : I[α,α]

y1,y2
× α → [h̃(

∧
I[α,α]

y1,y2
,α), h̃(

∨
I[α,α]

y1,y2
,α)] is

an order isomorphism; (iii) d(h̃(
∧

I[w1,w2]

y1,y2 ,w1), h̃(
∨

I[w1,w2]

y1,y2 ,w2)) ≤

γ(|[w1,w2]|). For a monotone deterministic transition system,
induced interval compatibility can be easily verified and the values
of

∨
I[w1,w2]

y1,y2 and
∧

I[w1,w2]

y1,y2 can be efficiently computed. A map M
can be found that for each pair of consecutive output observations
attaches to the discrete state a value of the continuous state. If
this map is order preserving, then the values of the ends of the
interval induced by [w1,w2] can be simply computed by computing
the map M on w1 and on w2. In general, let {y(k)}k∈N be an output
sequence of Σ . Define h̃k(z,w) := h̃(h̃k−1(z,w), f̃ k−1(w, y(k − 2))),
and f̃ k(w, y(k−1)) := f̃ (f̃ k−1(w, y(k−2), y(k−1))), with f̃ 0(w, y) :=

w and h̃0(z,w) := z.

Definition 4.4. Let Σ be a monotone transition system and Σ̃ =

Σ̃1 ◦f Σ̃2 its monotone extension on the partial order (χ × Z,≤),
with (Z,≤) an ordered space. We say that Σ̃ is continuous state
observable in k̄ steps if there is k̄ > 0 such that for all k ≥ 0,
for all output sequences of Σ{y(k)}k≥0, and for all w ∈ χ we have
that {z | g̃(z,w) = y(k), . . . , g̃(h̃k̄−1(z,w)), f̃ k̄−1(w, y(k + k̄ − 2)) =

y(k + k̄ − 1)} is a singleton in Z. The map MY(k) : χ → Z that
for each finite output sequence Y(k) = {y(i)}i∈[k,k+k̄−1] attaches
to a w ∈ χ the z ∈ Z according to MY(k)(w) := {z | g̃(z,w) =

y(k), . . . , g̃(h̃k̄−1(z,w)), f̃ k̄−1(w, y(k + k̄ − 2)) = y(k + k̄ − 1)} is the
observability map.

Thus, if the system Σ̃ is continuous state observable, the
continuous state z can be expressed as a function of the output
sequence and of a starting discrete state w ∈ χ.

Proposition 1. If the monotone extension of Σ , Σ̃ , is continuous
state observable in two steps, then (Σ̃, (χ × Z,≤)), with (Z,≤) an
ordered Banach space, is induced interval compatible. Furthermore,
let {y(k)}k∈N be an output sequence of Σ , if the observability map
MY(k) : χ → Z is also order preserving, then for all w1 ≤ w2 with
w1,w2 ∈ Oy(k) we have that

∧
I[w1,w2]

Y(k) = MY(k)(w1) and
∨

I[w1,w2]

Y(k) =

MY(k)(w2).

Proof. Item (i) of Definition 4.3 is satisfied as h̃ is order preserving
due to the fact that Σ̃ is a monotone extension of Σ on (χ ×

Z,≤). Item (ii) of Definition 4.3 is clearly verified as
∧

I[α,α]

y1,y2
=∨

I[α,α]

y1,y2
by the assumption of continuous state observability in two

steps. Let d̄ := maxwi�wj ‖h̃(MY(k)(wi),wi) − h̃(MY(k)(wj),wj)‖ for
wi,wj ∈ [w1,w2] ⊆ χ, then (iii) is verified with γ(|[w1,w2]|) =

d̄|[w1,w2]| by using the triangular inequality. By the hypothesis of
observability in two steps, it follows that

∧
I[w,w]

Y(k) = z∗ =
∨

I[w,w]

Y(k) =

MY(k)(w). By the order preserving property of MY(k), it follows that
MY(k)(w1) ≤ MY(k)(w2) when w1 ≤ w2. �

There is an extensive literature in the context of monotone
systems that studies conditions for the monotonicity of maps. The
reader is referred to [11] for details. A monotone system extension
that is continuous state observable in two steps automatically
satisfies the induced interval compatibility properties. Also, the
lower and upper bounds of the induced output sets that are
used in the estimator update laws can be readily computed if
the observability map is order preserving. As a consequence,
for a monotone extension Σ̃ for which the observability map
is order preserving, the update laws f3 and f4 of Theorem 4.1
transform to

f3(zL(k), L(k),U(k), y(k), y(k + 1)) = h̃
(
zL(k) g MY(k)(L

∗(k)), L∗(k)
)

f4(zU(k), L(k),U(k), y(k), y(k + 1)) = h̃
(
zU(k) f MY(k)(U

∗(k)),U∗(k)
)
.

(9)

5. Estimator Existence

Theorem 5.1. Assume that the system Σ = Σ1 ◦f Σ2 is observable
and independently discrete state observable. Then there exist lattices
(χ,≤), (ZE,≤), (L,≤) with U ⊆ χ, Z ⊆ ZE, and χ × ZE ⊆ L,
and system extensions Σ̃1 and Σ̃ such that the tuple (Σ̃1, Σ̃, (χ,≤))
is interval compatible and (Σ̃, (L,≤)) is induced interval compatible.

Proof. In the first part of the proof, we construct the lattice (χ,≤),
we define Σ̃1 and Σ̃ on χ × Z. Then we show that properties
(i)–(iii) of Definition 4.2 are verified. In the second part of the proof,
we define the lattices (L,≤), (ZE,≤), we define Σ̃ on L, and we
define an appropriate distance function d on ZE. Thus, we show
that properties (i)–(iii) of Definition 4.3 are satisfied.

Part 1. We define the lattice (χ,≤) as (χ,≤) = (P (U),⊆), that
is, the set of all subsets ofUwith order established according to set
inclusion. The bottom element is the empty set, denoted⊥, and the
top element is U itself. Any element in χ, denoted w, is of the form
w = α1 g · · ·gαn for some αi ∈ U. The system Σ̃1 = (χ,Y,χ, f̃ , id)
is determined once f̃ : χ × Y → χ is established. The function
f̃ : χ × Y → χ is defined as f̃ (w, y) = f (α1, y) g · · · g f (αn, y)
for any w = α1 g · · · g αn, and f̃ (⊥, y) = ⊥, for any y ∈ Y.
In order to identify the structure of the sets Ty1,y2(Σ̃), we define
Σ̃ = (L,Y, F̃, G̃) by initially defining F̃ and G̃ on χ × Z. Recall that
G̃|χ×ZE = g̃′ and that g̃′(w, z̄) = g̃(z̄,w) for all w ∈ χ and z̄ ∈ ZE. For
all (w, z) ∈ χ × Z, for w = α1 g · · · g αn, we define F̃(w, z) :=

F(α1, z) g · · · g F(αn, z), F(α, z) := (f (α, y), h(z,α)),with y =

g(z,α) for any α ∈ U. Also, we define the function g̃(z,w) for
all (w, z) ∈ χ × Z with w = α1 g · · · g αn as follows. We set
g̃(z,w) = y if and only if g(z,αi) = y for all i. As a consequence,
one can check that if Ty1,y2(Σ) = {α1, . . . ,αn} for some αi ∈ U,
then it follows that Ty1,y2(Σ̃) = [⊥,α1 g · · · g αn]. This directly
follows from the definition of F̃ and g̃. From this fact, it follows
that (i) of Definition 4.2 holds. Property (ii) follows from the fact
that f̃ is an order embedding by definition, from the fact that f̃ :

[⊥,w] → [⊥, f̃ (w, y)] is onto by definition, and from the fact that f̃ :

Ty1,y2(Σ̃) → f̃ (Ty1,y2(Σ̃), y1) must be one–one by the independent
discrete state observability assumption.

Part 2. In the second part of the proof, lattices (ZE,≤), and
(L,≤)with extensions F̃ : L → L and G̃ : L → Y are constructed.
Define {z | y = g(z,α),α ∈ U} := m(α, y). The set ZE is defined in
the following way: (i) Z ⊆ ZE; (ii) m(α, y) ∈ ZE for any y ∈ Y and
any α ∈ U; (iii) ZE is invariant under h, i.e., if z̄ ∈ ZE, then h(z̄,α) ∈

ZE for all z̄ ∈ ZE and all α ∈ U; (iv) ZE is closed under finite unions
and finite intersections. By construction, (ZE,≤) is a lattice where
the order is established by set inclusion. Each element in ZE is a
union of submanifolds or of points in Z. We denote an element
in ZE by z̄. Define (L,≤) := (P (χ × ZE),⊆), that is, the set of
all subsets of χ × ZE with order established by set inclusion. By
construction,χ×ZE ⊆ L. An element inL is denoted by q ∈ L and
it has the form q = (w1, z̄1)g· · ·g(wk, z̄k), inwhich z̄i ∈ ZE andwi ∈

χ. For all q = (w1, z̄1) g · · · g (wk, z̄k) ∈ L, its lower and its upper
approximations are defined as aL(q) := (w1 f · · ·fwk, z̄1 f · · ·f z̄k)
and aU(q) := (w1 g · · · g wk, z̄1 g · · · g z̄k). For all z̄ ∈ ZE and for
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all w ∈ χ, we define (⊥, z̄) = (w,⊥) = ⊥. Define the functions
G̃ : L → Y and F̃ : L → L in the following way. For all q =

(w1, z̄1)g· · ·g(wk, z̄k) ∈ L, withwi = αi,1g· · ·gαi,pi , define G̃(q) :=

y if and only if g̃(z̄i,wi) = y, g̃(z̄i,wi) := y if and only if g(z̄i,αi,j) =

y for all j ≤ pig(z̄i,α) = y if and only if z̄i ⊆ m(α, y). Also, define
F̃(q) := F̃(w1, z̄1) g · · · g F̃(wk, z̄n), F̃(wi, z̄i) := F̃(αi,1, z̄i) g · · · g
F̃(αi,pi , z̄i), and F̃(α, z̄) := (f (α, y), h(z̄,α)) if g(z̄,α) = y, y ∈ Y,α ∈

U, z̄ ∈ ZE, while F̃(α, z̄) := ⊥ if g(z̄,α) 6∈ Y,α ∈ U, z̄ ∈ ZE.
We define F̃(⊥) = ⊥. Note that z̄ ⊆ Z and therefore h does
not need to be extended. We next determine the structure of the
induced transition sets. The intervals [L∗,U∗

] in the estimator in
Theorem 4.1 always have the lower bound equal to⊥ as the output
sets Oy(k) have the lower bound equal to ⊥ and f̃ (⊥, y) = ⊥.
As a consequence, we are interested in the structure of I[⊥,w]

y1,y2
for

[⊥,w] ⊆ Ty1,y2(Σ̃). Let w = α1 g · · · g αn. One can then check
that I[⊥,w]

y1,y2
= [⊥, q], where q = (α1, z̄1) g · · · g (αn, z̄n), in which

z̄i ⊆ m(αi, y1). For all q ∈ I[⊥,w]

y1,y2
with q 6= ⊥, the definition

of F̃ guarantees that F̃ is order preserving on the induced output
set. Thus, (i) of Definition 4.3 is satisfied. To check that also (ii)
of the same definition is satisfied, note that I[α,α]

y1,y2
= (α, z̄) for

z̄ ⊆ m(α, y1). The assumption of Σ being observable and the
fact that F̃(α,m(α, y1)) = (f (α, y1), h(m(α, y1),α)) guarantee that
F̃ : (α,m(α, y1)) → F̃(α,m(α, y1)) is one–one. Since F̃ is also an
order embedding by definition, property (ii) of Definition 4.3 is
also verified. To show (iii) of Definition 4.3, we define a distance
function on ZE. For all z̄1, z̄2 ∈ ZE, we choose the discrete metric,
that is, d(z̄1, z̄2) = 1 if z̄1 6= z̄2, d(z̄1, z̄2) = 0 otherwise. This
distance satisfies the definition of a distance on a partial order. In
fact, if x ≤ y ≤ z we must have that d(x, y) ≤ d(x, z) otherwise we
would have d(x, z) = 0 and d(x, y) = 1, which is a contradiction.
For all [⊥,w] ⊆ χ with w 6= ⊥, |[⊥,w]| ≥ 1 and therefore (iii) of
Definition 4.3 is verified with γ = id. �

The construction of the partial orders in this theorem is non-
trivial due to the mixed discrete–continuous nature of the partial
order (L,≤). In particular, its elements are sets of pairs of elements
in χ and in ZE and thus they do not necessarily lie in the
Cartesian product χ × ZE. Therefore, the order between any two
elements in L cannot simply be derived by the ordering of the
Cartesian product (χ × ZE,≤). This is illustrated in Example 1 in
Section 6.

6. Examples

Example 1 (Linear Discrete-Time Hybrid Automaton). Let U =

{α1,α2,α3,α4,α5}, and α(k + 1) = f (α(k)) where f is defined as
f (α1) = α4, f (α2) = α5, f (α3) = α1, f (α4) = α5, f (α5) = α3.
Assume Z = Rn, the function h is given by z(k+1) = A(α(k))z(k)+

B(α(k)), where A(αi) = Ai ∈ Rn
× Rn and B(αi) = Bi ∈ Rn. The

output function g is such that g(z,α) = (gα(α), gz(α, z)), where
gα : U → {y1, y2} and gz(α, z) = C(α)z, with C(αi) = Ci ∈ Rm

× Rn.
Thus, Y = {y1, y2} × Rm. We denote the sets Y1 = {α ∈ U |

gα(α) = y1} := {α1,α2,α3} and Y2 = {α ∈ U | gα(α) = y2} :=

{α4,α5}. An instance of such an example is considered with n = 3
and m = 1, in which A1 = ((1, 1, 1)′, (0, 1, 1)′, (0, 0, 1)′)′, A2 =

((1/2, 1/2, 1/2)′, (1, 2, 2)′, (0, 0, 1)′)′, A3 = ((2, 1, 1)′, (0, 1, 1)′,
(2, 0, 0)′)′, A4 = ((1, 1, 1)′, (1, 1, 0)′, (0, 0, 1)′)′, A5 = ((1, 0, 0)′,
(1, 1, 1)′, (1, 1, 0)′)′, C1 = (1, 0, 0), C2 = (1, 1, 2), C3 = (0, 0, 0),
C4 = (1, 0, 0), and C5 = (0, 1, 1). In this example, Σ = Σ1 ◦c Σ2
with Σ1 = (U,U, f , id) and Σ2 = (Z,U,Y, h, g). The system
Σ̃1 = (χ,χ, f̃ , id) is defined as follows.

The lattice (χ,≤) whose construction is sketched in Theo-
rem 5.1 is shown in Fig. 2. It contains the set of all subsets of U
on which the estimator can evolve. Such a diagram also shows
the way f̃ : χ → χ is defined. The system Σ̃ = (L,Y, F̃, G̃)
Fig. 2. Lattice (χ,≤). We have f̃ (Y2) = {α3,α5}, f̃ (Y1) = {α1,α4,α5}, and
f̃2(Y1) = {α3,α4,α5}.

is defined as follows. The lattice (ZE,≤) is constructed accord-
ing to the proof of Theorem 5.1, in which the submanifolds are
affine linear subspace. The partial order (L,≤), the function F̃,
and the function G̃ are also constructed as in the proof of The-
orem 5.1. An element of L is a set of pairs (αi,mi), in which
αi is a discrete variable and mi is a hyperplane where z can
be, given the discrete variable αi and a continuous output se-
quence. The estimator of Theorem 4.1 is applied. Thus, zU(k) at
each step k is a collection of affine linear subspaces, each given
by the set of z ∈ R3 such that Mi(k)z = (y(k) − Vi(k)), where
Mi(k) = (C(αi)

′, (C(f (αi))A(αi))
′, . . . , (C(f k−1(αi))A(f k−2(αi)))

′)′,
and Vi(k) = (0, C(f (αi))B(αi), . . . C(f k−1(αi))B(f k−2(αi)))

′, with
y(k) = (y(0), . . . , y(k − 1))′, and αi is such that f k−1(αi) ∈

[⊥,U(k)], for U(k) ∈ χ and i ∈ {1, . . . , 5}. When only one αi

is left in [⊥,U(k)] and the corresponding matrix Mi(k) has rank
equal to n, the estimator has converged. Thus, define d1(⊥, zU(k)) =∑5

i=1 β(Mi(k)) where β(Mi(k)) := 0 if f k−1(αi) 6∈ [⊥,U(k)], while
β(Mi(k)) := (n + 1) − rank(Mi(k)), otherwise. As a consequence,
when d1(⊥, zU(k)) = 1, the estimator has converged and z(k) =

Mj(k)Ď(y(k) − Vj(k)) for some j ∈ {1, . . . , 5}, where Mj(k)Ď is the
pseudoinverse of Mj(k). The value of β(Mi(k)) is the dimension of
the kernel ofMi(k) plus one. One is added because if zU(k) 6= ⊥ = ∅

but it is equal to a singleton, the distance d1(⊥, zU(k)) cannot be
zero. The continuous state estimator convergence speed depends
only on the rank of Mi(k) and on the discrete state estimator con-
vergence speed. It does not depend on the specific values of Bi.
Once d1(⊥, zU(k)) = 1 the state of the system is tracked (Fig. 3).
In this example, the representation of the elements of (χ,≤) and
of (ZE,≤) involves a listing of objects: a listing of α values and
a listing of linear subspaces. If |U| is very large (see Example 3),
this choice of the partial orders renders the estimation process pro-
hibitive.

Example 2 (Monotone System). This example considers a system
Σ = Σ1 ◦c Σ2 in which Σ1 has the same structure as in Example 1,
while the continuous state update map h is defined by z1(k +

1) = (1 − β)z1(k) − βz2(k) + 2βX(α(k)) and z2(k + 1) = (1 −

λ)z2(k) + λX(α(k)), where β = 0.1, λ = 0.1, X(αi) := 10i for
i ∈ {1, . . . , 5}. We denote by h2 the map that attaches to a pair
(α, z2) the value of (1 − λ)z2(k) + λX(α(k)). The output function g
is such that g(z,α) = (gα(α), gz(α, z)), where gα : U → {y1, y2}
and gz(α, z) = z1. The lattice (χ,≤) is shown in Fig. 2 and the
system Σ̃1 is the same as the one of Example 1. The system Σ̃2 =

(Z,χ,Y, h̃, g̃) is defined as follows. We choose L = χ × Z, in
which Z = R2, and the ordered space (Z,≤) is chosen such that
(za1, z

a
2) ≤ (zb1, z

b
2) if and only if za2 ≤ zb2. Note that this is not an

ordered Banach space (condition (iii) in the definition of an ordered
Banach space is not satisfied). However, this is enough for this
example as we have to construct an estimator only for z2 as z1 is
measured. Let the function X̃ : χ → R be defined by X̃(Y1) :=

max(X(α1), X(α2), X(α3)) = 30, X̃(Y2) := max(X(α3), X(α5)) = 50,
X̃(f̃ (Y2)) = 50, X̃(f̃ 2(Y1)) = 50, X̃(f̃ (Y1)) = 50, and X̃(⊥) := 0. The
functions h̃ and h̃2 are the same as h and h2, respectively, but with X̃
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Fig. 3. Left: Estimator performance for Example 1. Middle: Estimator performance for Example 2. Right: Estimator performance for Example 3 with N = 10 robots per team.
In the plots, d0(⊥,U(k)) = |[⊥,U(k)]|.
in place of X. The function g̃ is defined as in Example 1,while g̃z = gz.
With this choice, h̃(za,w1) ≤ h̃(zb,w2) for all (w1, za) ≤ (w2, zb),
that is, the system is monotone. It can be shown that the system
Σ̃ = Σ̃1 ◦c Σ̃2 is continuous state observable in two steps. Also, the
observability map MY(k)(·) with Y(k) = {z1(k), z1(k + 1)} defined
by w →

1
β

((1 − β)z1(k) − z1(k + 1) + 2βxw) is order preserving.
The estimator of Theorem 4.1 is implemented with the special
structure of Eq. (9), in which zL and zU are the lower and upper
bounds on the variable z2 and h̃ is replaced by h̃2. Convergence
plots are shown in Fig. 3 (middle). The distance d2 is the Euclidean
distance. The representation of the elements in ZE requires only
n scalar numbers as ZE = Z, and the computation of the order
relation is simple. This alleviates the computation with respect to
the previous example.

Example 3 (RoboFlag Drill). The example presented in Section 2
is revisited here. We have U = perm(N) and Z = R2N , with
output g(z) = (z1,1, . . . , zN,1) := z1 ∈ Y = RN . The function
f : U × Y → U that updates α is given by Eq. (3). Thus, Σ1 =

(U,Y,U, f , id). The function h : Z × U → Z that updates the z
variables is given by Eqs. (1) and (2). Thus, Σ2 = (Z,U,Y, h, g).
The overall system is given by Σ = Σ1 ◦f Σ2. The set χ is the
set of vectors in NN with components less than N, and the order
between any two vectors in χ is established component-wise.
The extended system Σ̃ = Σ̃1 ◦f Σ̃2 is constructed by defining
functions f̃ and h̃ as f and h, respectively, in which α is replaced
by w ∈ NN . The map g̃ is the same as g. It can be shown that
the system Σ is independently discrete state observable and that
(Σ̃1, Σ̃, (χ,≤)) is interval compatible [10]. Define the ordered
space (Z,≤) by choosing the positive cone K in Z composed by
all vectors v = (v1,1, v1,2, . . . , vN,1, vN,2) such that vi,2 ≥ 0. The
system Σ̃ is a monotone extension of Σ as the order on each zi,2
is preserved by the dynamics in Eq. (2). The observability map
defined in Section 2 is order preserving in its argument w =

(w1, . . . ,wN) ∈ χ and Σ̃ is observable in two steps. The estimator
in Theorem 4.1 has been implemented with the special structure
of Eq. (4), in which zL and zU are the lower and upper bounds
on z2, respectively. The discrete state estimator is the same as
the one in [10] and given in Lemma 4.1. Fig. 3 (right) illustrates
the estimator performance, in which W(k) =

∑N
i=1 |mi(k)|, where

|mi(k)| is the cardinality of the sets mi(k) that are the sets of
possible αi for each component obtained from the sets [Li,Ui] by
removing iteratively a singleton occurring at component i by all
other components. When [L(k),U(k)] ∩ perm(N) has converged
to α, we also have that mi(k) = αi(k). The distance function for
z, x ∈ RN is defined by d(x, z) =

∑N
i=1 abs(zi − xi). The function

V(k) = γ(|[L(k),U(k)]|), defined as V(k) :=
1
2

∑N
i=1(xUi(k) − xLi(k)),
is always non-increasing and d(zL(k), zU(k)) ≤ V(k) for all k. Note
that even if the discrete state has not converged yet, the continuous
state estimation error after k = 8 is close to zero. This is due to
the prediction-correction estimation strategy, which at each step
restricts the set of all possible current continuous variable values.
From Example 1 to Example 3 the computation decreases. This
is due to the monotone properties of the continuous dynamics
in Example 2 and in Example 3, and to the existence of a lattice
(χ,≤) with algebraic properties in Example 3. As a last remark,
partial order techniques for Petri nets are another application of
the state estimation theory proposed in this work (see [8] for
details).

7. Conclusions

In this paper, we have proposed a methodology for the
estimation of continuous and discrete variables in hybrid systems
that relies on partial order structures to reduce computation. A
cascade discrete-continuous state estimator has been constructed,
which is the cascade interconnection of a discrete state estimator
and a continuous state estimator. We have shown that the
proposed techniques are general as they apply to any observable
and independently discrete state observable system. The main
advantage of using the partial order approach is shown when
the system has some monotone properties that can be directly
exploited in the estimator construction. Three examples are
proposed that show the applicability of our approach and show
what computational advantages can be derived in practice from its
application.
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