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Abstract—Synthetic biology, that is, the ability to engineer
biology for useful functionalities will have remarkable impact in
a number of applications ranging from health and medicine, to
environment and energy. Examples include engineered bacteria
that recognize and Kkill cancer cells, nautralize radioactive waste,
transform feedstock into fuel, and programmable mammalian
cells that control the differentiation of tissue in vivo. Engineering
biological circuits that are sufficiently sophisticated to accomplish
these functions is becoming possible, but at the same time
is proving challenging due to a number of obstacles. Many
of these obstacles require a system-level understanding of the
dynamical and robustness properties of interacting systems and
hence the field of control and dynamical systems theory may
highly contribute. In this paper, we review the basic technology
employed in engineering biology, simple example modules and
complex systems created using this technology, and discuss key
system-level problems along with challenging research questions
for the field of control theory.

Index Terms—biomolecular systems, gene expression, robust-
ness, scalability, modularity.

I. INTRODUCTION TO SYNTHETIC BIOLOGY

Synthetic biology is an engineering discipline in which
the biochemical and biophysical principles present in living
organisms are used to engineer new systems [12]. These
systems will have the ability to accomplish a number of
remarkable tasks, such as turning waste into energy sources
[46, 57], detecting pathogens [45], or recognizing cancer cells
with the aim of targeting them for deletion [18]. While syn-
thetic biology can be employed to create new functionalities,
it can also enable the understanding of fundamental design
principles of living systems. In fact, implementing a circuit
with a prescribed behavior provides a powerful means to test
hypotheses regarding the underling biological mechanisms.

The functions of living organisms are controlled by
biomolecular circuits, in which, at the most basic level, pro-
teins and genes interact with each other through activation
and repression interactions forming complex networks. A
common signal carrier is the concentration of the active form
of a protein, which can be controlled through a number
of mechanisms, including gene expression regulation, post-
transcriptional, and post-translational modification. Through
the process of gene expression, proteins are produced by their
corresponding genes, whose production rates can be activated
or repressed by other proteins (transcription factors). Once the
proteins are produced they can be activated or inhibited, by
other proteins or small molecules, through post-transcriptional

modification of mRNA and post-translation modification to
proteins, such as phosphorylation, and allosteric modification
[5, 21]. We next describe some salient aspects of gene expres-
sion focusing, for simplicity, on prokaryotic systems.

A gene is a piece of DNA whose expression rate can often
be controlled by a DNA sequence upstream of the gene itself,
called promoter. The promoter contains the binding regions
for the RNA polymerase, an enzyme that transcribes the gene
into a messenger RNA molecule, which is then translated
into protein by the ribosomes (central dogma of molecular
biology [4]). The promoter also contains operator sites, which
are binding regions where other proteins, called transcription
factors, can bind. If these proteins are activators, they will
help the RNA polymerase in binding the promoter to start
transcription. By contrast, if these proteins are repressors, they
will prevent the RNA polymerase from binding the promoter.
These activation and repression interactions are nonlinear
and stochastic, therefore the most commonly used modeling
frameworks include systems of nonlinear ordinary differential
equations, stochastic differential equations, or the chemical
master equation [21].

The basic technique for constructing synthetic circuits is that
of assembling, through the process of cloning, DNA sequences
with prescribed combinations of promoters and genes such that
a desired network of activation and repression interaction is
created. For example, if we would like to create an “inverter”
where protein A represses protein B, we can simply place
the gene of B under the control of a promoter repressed by
protein A. Currently, there is an increasing library of parts
that one can use to assemble a desired circuit this way [1, 2].
The set of parts includes promoters, gene coding sequences,
terminators, and ribosome binding sites. Terminators are DNA
sequences placed at the end of a gene to make the RNA
polymerase terminate transcription, while ribosome binding
sites are DNA sequences placed at the beginning of a gene,
which establish the rate at which ribosomes will bind to the
mRNA, determining the overall translation rate [21]. An area
of intense research is expansion of the library by creating
mutations of existing parts or by assembling new ones.

Once a DNA sequence is created that encodes the desired
circuit, it is inserted in a cell either on the chromosome
itself or on DNA plasmids. Once in the cell, the circuit can
“run” using the cellular resources required for gene expression,
including RNA polymerase and ribosomes, amino acids, and
ATP. Alternatively, a cell extract can be created for running
the circuits in cell-free setups [47, 44], a technology that has
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Fig. 1. Early gene circuits that have been fabricated in bacteria E. coli:
the negatively autoregulated gene [9], the toggle switch [26], the activator-
repressor clock [7], and the repressilator [25].

open the way to a number of applications, including diagnostic
[45, 54]. In this sense, the cell, or the cell extract, can be
viewed as a chassis for the synthetic genetic circuits. The
operation of the circuit can then be observed by monitoring
the concentration of reporters, that is, of proteins that are easy
to detect and quantify. These include fluorescent proteins, that
is, proteins that exhibit bright fluorescence when exposed to
light of a specific wave length. Examples include the green,
red, blue, and yellow fluorescent proteins. These fluorescent
proteins are mainly employed in two different ways to measure
the amount of a protein of interest. Specifically, one can fuse
the gene of the fluorescent protein with the gene expressing
the protein of interest. Alternatively, one can use the protein
of interest as a transcription factor of the fluorescent protein.
In both cases, the concentration of the fluorescent protein will
provide an indirect measurement of the concentration of the
protein of interest.

It is also possible to apply external inputs to a circuit to
control the activity of transcription factors. This is accom-
plished through the use of inducers, which are small signaling
molecules that can be injected in the cell culture and enter the
cell wall. These inducers bind specific transcription factors
and either activate them, allowing the transcription factor to
bind the promoter operator sites, or inhibit them, reducing the
transcription factor ability to bind the promoter operator sites
[39].

II. EARLY SYNTHETIC BIOLOGY MODULES

A number of modules comprising two or three genes have
been fabricated in the earlier days of synthetic biology [7, 9,
25, 26, 53]. We can group them into oscillators [7, 25, 53],
mono-stable systems [9], and bistable systems called toggle
switches [26].

Oscillators. The creation of circuits whose protein concen-
trations oscillate periodically in time has been a major focus.

In fact, the ability of creating an oscillator has the potential
of shedding light into the mechanisms at the basis of natural
clocks, such as circadian rhythms and the cell cycle. Oscillator
designs can be divided into two types: loop oscillators [25],
in which repression/activation interactions occur in a loop
topology, or oscillators based on the interplay between an
autocatalytic loop and negative feedback [7, 53] (see Figure
1).

The design requirements of synthetic circuits are usually
explored through models of varying detail, starting with the
use of low-dimensional models, which are composed of a
set of nonlinear ordinary differential equations describing the
rate of change of the circuit’s proteins. These models allow
application of a number of tools from dynamical systems
theory to infer parameter or structural requirements for a
desired behavior. After simple models are analyzed, larger
scale mechanistic models are constructed, which include all the
intermediate species taking part in the biochemical reactions.
These models can be either deterministic or stochastic. Simula-
tion is usually required for the study of these more complicated
models and the Gillespie algorithm is often employed for
stochastic simulations [27].

As an example of a simple model and related analysis,
consider the activator-repressor clock of Atkinson et al. [7]
shown in Figure 1. This oscillator is composed of an activator
A activating itself and a repressor B, which, in turn, represses
the activator A. Both activation and repression occur through
transcription regulation. Denoting in italics the concentration
of species, a toy model of this clock can be written as

Ba(A/Ka)" + Bo,a
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in which 74 and ~p represent protein decay
(due to dilution and/or degradation). The functions
(Ba(A/Ka)" + Bo,a)/(1+ (A/Ka)" + (B/Kp)™) and
(Be(A/Ko)™ + BoB)/(1+ (A/K,)") are called Hill

functions and are the most commonly used models for
transcription regulation [21]. The first Hill function in system
(1) increases with A and decreases with B while the second
one increases with A, as expected since A is an activator
and B is a repressor. The key mechanism by which this
system displays sustained oscillations is a supercritical Hopf
bifurcation with bifurcation parameter the relative time
scale of the activator dynamics with respect to the repressor
dynamics [21]. Specifically, as the activator dynamics become
faster than the repressor dynamics, the system goes through
a supercritical Hopf bifurcation and a stable periodic orbit
appears (Figure 2(b)).

Mono-stable systems. The first mono-stable system engi-
neered through negative autoregulation was fabricated with the
aim of understanding the role of negative feedback in atten-
uating biological noise. The results of Becskei and Serrano
[9] clearly showed that negative autoregulation can reduce
intrinsic noise. Furthermore, the results of Austin et al. [8]
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Fig. 2. Activator-repressor clock time trajectory.

demonstrated that while low frequency noise is attenuated,
noise at high frequency can be amplified by negative autoreg-
ulation in accordance with Bode’s integral formula [3].

Bistable systems. The toggle switch of Gardner et al.
[26] was the first bistable system constructed. It constitutes
the simplest circuit with memory, in which the state of the
system can be switched from one equilibrium (low, high) to
the other (high, low) by external inputs. Once the system
state is switched to one of these two equilibria, it will stay
there unless another external perturbation is applied. Based
on this circuit, a number of applications have been developed,
including systems to control endogenous cell factors [35], kill
switches for programmed cell death [16], and programmable
bacteria that detect and record events in the guts [36].

While the early circuits described so far were fabricated
mainly to investigate design principles for limit cycles, mem-
ory, and robustness to noise, many more circuits after these
have been fabricated with the aim of solving concrete engi-
neering problems, including incoherent feedforward loops for
robustness to DNA copy number [11, 51], logic gates [41],
communication modules [17], load drivers [40, 43], and vari-
ous types of feedback controllers [29, 34, 6, 52, 31, 37]. For a
more extensive review, the reader is referred to [23, 50, 30, 38].

III. FROM MODULES TO SYSTEMS: OPPORTUNITIES AND
CHALLENGES

One approach to creating systems that can accomplish so-
phisticated tasks is to assemble together simpler modules, such
as those described in the previous section [48]. Increasingly
large systems are being built by composing modules together
in a layered architecture [41] and software tools such as Cello
are being developed in order to automate the process that goes
from design concept to choice of genetic parts [42]. Layered
logic gates are often necessary in order to integrate multiple
signals in several applications. One such application is a cell
type classifier based on RNA signatures [55]. Here, a synthetic
gene circuit is created that integrates sensory information from
a number of molecular markers to determine whether a cell
is in a specific state, that is, cancer, and, in such a case,
produces a protein output triggering cell death. The design of
this circuit is based on the composition of three key modules.
Specifically, a double inversion module senses high levels of a
molecular marker, a single inversion module senses low levels

of a molecular marker, and a logical “and” module finally
integrates the outputs of the other two modules to produce the
output protein.

While increasingly sophisticated circuits composed of mul-
tiple modules are being built, the behavior of these circuits
becomes more difficult to predict and engineer as their size
increases. A major problem is that circuits characterized in
isolation often fail to behave as intended once they are part
of a larger system. This type of failure is commonly referred
to as context-dependence of genetic circuits [13, 20], that is,
the fact that modules behave in a poorly predictable way
once interacting together in the cell environment. This is a
bottleneck to creating larger circuits that behave predictably.

Problems of context-dependence can be divided into three
qualitatively different types: genetic context; direct inter-
module interactions; and indirect interactions among genetic
modules. While the first one can be dealt with via appropriate
genetic engineering of DNA parts [20, 56, 39], the other two
forms of context-dependence require a system-level under-
standing of dynamic interactions among circuit components.
We therefore focus mostly on the latter two aspects here.

Direct inter-module interactions. These are unwanted in-
teractions that occur directly between modules. A well known
example is that of off-target binding of transcription factors to
promoters. These undesirable bindings couple genetic modules
that should be decoupled and can be tackled by co-optimizing
the genetic sequences of promoters and transcription factors
[39]. A different type of undesirable interaction occurs when
modules are connected to each other and a protein in an
upstream module is used as an “input” to a downstream
module. This creates a “load” on the upstream system due
to the fact that the output protein cannot take part in the
upstream module’s reactions whenever it is taking part in
the downstream module’s reactions. As a consequence, the
behavior of the upstream module changes compared to when
the system functions in isolation [22, 33]. These loading
effects have been called retroactivity to extend the notion of
loading and impedance to biomolecular systems. Solutions to
mitigate this problem have appeared [43, 40]. These are based
on the design of “insulation devices”, systems that are placed
between a sending module and receiving load modules such
that arbitrarily large loads can be driven without a deterioration
of the transmitted signal. The design of these load drivers uses
principles of disturbance attenuation from control theory in
order to reject retroactivity [32].

Indirect interactions among genetic modules. Ideally, the
cell should function as a “chassis” for engineered biological
circuits. In practice, this is not the case because the cellular
endogenous circuitry interacts with externally introduced cir-
cuits at multiple levels, chiefly by sequestering resources such
as ATP, RNA polymerase, and ribosomes, which are required
for the operation of synthetic circuits. This sequestration often
reduces cell fitness, with deleterious consequences also for
synthetic circuits, a phenomenon that has been broadly called
“metabolic burden” [10]. This phenomenon has been studied



and characterized more precisely in recent years, by showing
that it is possible to create a “burden monitor” that senses the
level of stress by cells and correlates with growth rate [14]. A
more subtle phenomenon than purely reducing cell fitness is
that synthetic circuits compete with each other for the same
resources. This fact creates implicit and unwanted coupling
among circuits with unpredictable consequences. Specifically,
it was demonstrated that competition for shared gene expres-
sion resources, chiefly ribosomes, by multiple synthetic genes
couples the expression levels of these genes in such a way
that inducing one gene causes a drop in the expression of the
other [28]. These “hidden” interactions are a major cause of
lack of modularity in the design of genetic circuits and have
been shown to lead to emergent genetic circuit behaviors that
are arbitrarily far from the theoretically prescribed one [49].

Approaches to mitigate these problems have recently ap-
peared in the literature. Specifically, in order to mitigate
defects on cell growth rate imparted by induction of synthetic
genes, a control system has been built, which uses the burden
monitor to sense burden and, based on this, reduces the
expression of synthetic genes [15]. Concurrently, solutions
have appeared to mitigate the coupling among synthetic ge-
netic circuits due to competition for ribosomes. Two types
of solutions have appeared. The first type is a decentralized
control architecture in which each genetic module is equipped
with a feedback controller that aims at making output protein
level robust to fluctuations in available ribosomes [52, 31].
Specifically, in [31], the authors built a quasi-integral con-
troller that is embedded within a genetic module via post-
transcriptional modifications, which allows to keep the inputs
and outputs of the genetic module unchanged while reaching
adaptation to variable ribosome demand. In the second type of
solution, a centralized controller was proposed to dynamically
allocate orthogonal ribosomes to synthetic genetic circuits
[19].

Finally, the external environment where a cell operates has
a number of physical attributes, which may also be subject to
perturbations. These physical attributes include temperature,
acidity, nutrients’ level, etc. Perturbations in these attributes
often lead to poor cell fitness or to non-standard growth con-
ditions, ultimately leading to synthetic circuits malfunctions.
Recently, a universal integral control architecture has been
proposed to mitigate some of these disturbances, such as
growth rate changes [6].

IV. SUMMARY AND FUTURE DIRECTIONS

The future of synthetic biology highly depends on the
ability of scaling up the complexity of design to create more
sophisticated functions, which yet are robust and reliable.
While a number of issues can be successfully addressed by
(non-trivial) fabrication of new parts, issues such as context-
dependence require a system-level dynamic understanding of
circuits and their interactions. Here is where control and
dynamical systems theory could greatly contribute. Control
theory has proven critical to reason about and engineer

robustness in a number of concrete applications including
aerospace and automotive systems, robotics and intelligent
machines, manufacturing chains, electrical, power, and infor-
mation networks. Similarly, control theory could enable the
understanding of principles that ensure robust behavior of
synthetic genetic circuits. An extensive review on this topic
can be found in [24].
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