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ABSTRACT

Multistability is a key property of dynamical systems mod-
eling cellular regulatory networks implicated in cell fate de-
cisions, where, different stable steady states usually represent
distinct cell phenotypes. Monotone network motifs are highly
represented in these regulatory networks. In this paper, we
leverage the properties of monotone dynamical systems to pro-
vide theoretical results that guide the selection of inputs that
trigger a transition, i.e., reprogram the network, to a desired
stable steady state. We first show that monotone dynamical
systems with bounded trajectories admit a minimum and a
maximum stable steady state. Then, we provide input choices
that are guaranteed to reprogram the system to these extreme
steady states. For intermediate states, we provide an input
space that is guaranteed to contain an input that reprograms the
system to the desired state. We then provide implementation
guidelines for finite-time procedures that search this space for
such an input, along with rules to prune parts of the space
during search. We demonstrate these results on simulations
of two recurrent regulatory network motifs: self-activation
within mutual antagonism and self-activation within mutual
cooperation. Our results depend uniquely on the structure of
the network and are independent of specific parameter values.

I. INTRODUCTION

'Multistability is encountered in several models of cell
differentiation and development. In particular, core gene reg-
ulatory networks (GRNs) that control cell fate decisions are
traditionally modeled as multistable dynamical systems, with
stable steady states representing cell phenotypes [2]-[9]. Under
this framework, cell differentiation, which is the process by
which cells convert from one type to another, can be viewed
as the state of the dynamical system moving from one stable
steady state to another. Artificially converting cells from one
phenotype to another using external inputs typically involves
up- or down-regulating the transcription factors of these core
gene regulatory networks. Which factors to regulate, as well as
whether to up- or down-regulate them, is typically decided via
experimental trial-and-error [10]-[13], and often, the efficiency
of the cell conversion process is quite low (about 1% for
induced pluripotent stem cell reprogramming [14]). It has
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been theoretically shown in the case of reprogramming to
pluripotent stem cells, that “intuitive” inputs, such as up-
regulating factors that are higher in the target state and down-
regulating those that are lower in the target state, might be
ineffective [2]. Theoretical and computational work that could
guide this experimental process could therefore be crucial for
reducing the time and number of experiments, as well as for
increasing the efficiency of inducing cell fate transitions.

Several studies have analyzed multistable dynamical mod-
els of GRNs controlling cell fate decisions. In [2], [6]-
[8], specific GRNs are analyzed and recommendations for
reprogramming these systems are made. In [15], [16], boolean
models of GRNs are analyzed computationally to identify
the key transcription factors that, when perturbed, destabilize
the undesired steady state and induce a transition to the
desired steady state. In [3], parameter regimes for two-node
motifs of mutual antagonism and mutual cooperation are
found that result in bistability and multistability. These works
either rely on a specific choice of biologically reasonable
parameters, or on computationally sampling parameters for
the network. However, many GRNs responsible for cell-fate
decisions belong to the class of monotone dynamical systems
for which there is rich theoretical work [17]-[19]. This work
could be leveraged to make more general recommendations
for reprogramming strategies, without relying on brute-force
search in parameter space. The classical works on monotone
systems [17], [18] present results on the stability and limit-sets
of these systems, among others. The work in [19] extends this
theory for the case of controlled monotone systems. In [20]-
[22], multistable systems with positive feedback are analyzed,
such that locations and stability of steady states can be found
using the input-output characteristic of the resulting monotone
system when the feedback loop is open.

In this paper, we leverage these theoretical results to
provide parameter-independent strategies for choosing inputs
to reprogram monotone systems. In Section II, we present mo-
tivating examples of network motifs that are highly represented
in GRNs that control cell-fate decisions and can be modeled
as monotone dynamical systems. In Section III, we summarize
some key results from the literature on monotone systems,
and provide a formal definition of reprogramming. In Section
IV, we show that the set of stable steady states of monotone
systems must have a minimum and a maximum. We then show
that, based on the graphical structure of the network, we can
determine which nodes must receive a positive input and which
must receive a negative input, so that for large enough inputs
of this type, the system is guaranteed to be reprogrammed
to extremal states. Next, in Section V, we provide results



for the remaining non-extremal (intermediate) stable steady
states, to eliminate inputs that are guaranteed not to reprogram
the system to the intermediate stable steady states. Then, we
present an input space that, for any desired stable steady
state, is guaranteed to contain an input that reprograms the
system to that state. We present guidelines to design finite-time
search procedures to search for such an input, and apply our
theoretical results to prune the input space while searching.
We demonstrate these results using two ubiquitous network
motifs which control cell fate at several points along the cell
development process. In Section VI, we apply these results to
a 3-node network motif, and demonstrate how the system can
be reprogrammed to the desired stable steady state using these
strategies. Section VII presents the conclusions and directions
for future work.

II. MOTIVATING EXAMPLES

As motivating examples, we consider three network mo-
tifs, which are highly represented in gene regulatory networks
(GRNs) involved in cell fate determination. The first is a
motif where two nodes are each self-activating while mutually
repressing each other (Fig. 1a). The second motif is one where
two nodes are self-activating while also activating each other
(Fig. 1b), and the third motif is one with three nodes that
are self-activating while also activating each other (Fig. 1c).
The first network motif is found in gene regulatory networks
controlling lineage specification of hematopoietic stem cells
[23]-[34]. The second and third motifs are found in gene
regulatory networks involved in maintenance of the pluripotent
stem cell state [35]-[41].
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Fig. 1: Examples of network motifs found in GRNs involved in cell
fate determination [23]-[41]. Here, arrows “—” represent activation
(positive interaction) and arrows “—|” represent repression (nega-
tive interaction). (a) Mutual antagonism network, where two nodes
mutually repress one another while self-activating. (b) Two-node
mutual cooperation network, where two nodes mutually activate one
another while also self-activating. (c¢) Three-node mutual cooperation
network, where each node activates the others and itself.

The dynamics of these network motifs have been
commonly modeled through ordinary differential equations
(ODEs) as follows:

&y = hi(x) — viw; + q(xq, w;), )]

with z = (21, ...,z,) € X C R} representing the state of the
network, and x; the concentration of protein x;. The regulatory
function h;(x), called Hill-function [42], [43], [44], captures
the effect of the proteins xi, ..., X, of the network on the
production rate of protein x;. If protein x; activates (represses)
X;, that is X; — X; (X; —| X;), then h;(x) increases (decreases)
with x;. Further, h;(x) is strictly positive and bounded from
above for all x. The constant 7; is the decay rate constant
due to degradation or dilution. Here, w; = (u;,v;) € Rf_ is

an external input stimulation that can be applied during the
reprogramming process, with ¢(z;,w;) = wu; — v;x;, where
u; is a positive stimulation achieved by over-expression of
protein x; [45], [46], and v; is a negative stimulation achieved
by enhanced degradation of protein x; [2]. For example, for the
mutual antagonism network motif of Fig. la, we have n = 2,
with
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indicating that the production rate of x; increases with z; and
decreases with x2, and the production rate of X, increases with
a9 and decreases with x1. Here, 31, B2 are the rate constants
of leaky expressions of the species, «, g are the activation
rate constants, ki, ko, k3, k4 are the apparent dissociation
constants, and nq, no, ng, ng are the Hill function coefficients.
The nullclines and steady states for this system for a particular
set of parameters and no input (w = 0) are shown in Fig. 2a.
For these parameters, the system has three stable steady states
51,52 and S3. When this system models the hematopoietic
stem cell network, x1 and x5 represent the concentrations of
proteins PU.1 and GATAI, the steady state So represents the
hematopoietic stem cell state, whereas S; and S3 represent
more specialized states, namely, the erythrocyte and myeloid
cell lineages, respectively [23]-[34].
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Fig. 2: Nullclines of the ODEs modeling the two-node network
motifs given by (1), (2), (3) when unstimulated (w = 0). Filled
circles represent the stable steady states S1,.S2 and S3. Blue arrows
show vector field (&1, Z2). Regions of attraction of the stable steady
states S1, S2 and S3 are shown by the coral, blue and purple shaded
regions, respectively. (a) Nullclines for the system of ODEs modeling
the mutual antagonism network, with h;(z) given by (2). Parameters:
a1 = 5nMs Y, 61 = 3nMs ™!, as = 5.2nMs™ L, B = 4nMs ™t
Ny =Mn2 =n3 = ng = 2, ki = k2 = 1nM, Y1 = Y2 = 0.2s7 1.
(b) Nullclines for the system of ODEs modeling the two-node mutual
cooperation network, with h;(z) given by (3). Parameters: n; = 12 =
107*nMs ™', a1 = 2nMs™ ', by = 0.25nMs™ ', ¢; = 2.5nMs™ ",
az =0.18nMs ™", by = 2nMs™ !, ¢ = 2.5nMs ™!, ny = ny = ng =
2, k1 = ko = ks = 1nM, Y1 =72 = 1s7 1.

For the two-node mutual cooperation network motif of
Fig. 1b, we have n = 2,
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so that the production rates of x; and X, both increase with
z1, and with z5. The nullclines and steady states for this
system for a particular set of parameters and no input (w = 0
in (1)) are shown in Fig. 2b. For these parameter values,
this motif results in three stable steady states Sp,.S; and Ss.
When this system is used to model the pluripotency network,
z1 and xo can be regarded as the concentrations of the
Nanog protein and the Oct4-Sox2 hetero-dimer, respectively,
the state Sy represents the undifferentiated pluripotent state,
S1 corresponds to the trophectoderm state and S5 corresponds
to the primitive endoderm state [35]-[41].

The biological problem of reprogramming a cell to a
desired phenotype or cell state can be formulated as the math-
ematical problem of finding an input w = (wq, ..., w,) that,
when applied transiently, can trigger a transition in the state
of system (1) to a desired stable steady state. We will refer
to this mathematical problem as “reprogramming” in the rest
of the paper. To reprogram a multi-stable system to a desired
stable steady state, say S4, we use transient input simulations
as follows. We apply a constant input w = (wq, ..., wy), if it
exists, such that the trajectory of the stimulated system enters
the region of attraction of Sy. After the trajectory has entered
the region of attraction of the target state S, the stimulation
is removed, and the trajectory of the unstimulated system
converges to S4 so that the system is reprogrammed to it.

In this paper, leveraging the monotone nature of the
systems’ dynamics, we provide sufficient conditions for the
existence of such constant inputs and a finite-time search
procedure to find them. While for 2D systems with known
parameters, nullcline analysis can address this question, when
system dimension is higher or parameters are not known, a
more general approach is required. Our approach relies only on
structural information and does not require parameter values.

III. SYSTEM DESCRIPTION AND PROBLEM DEFINITION

In this section, we provide the definition and some key
properties of monotone dynamical systems, and mathemati-
cally define the problem of reprogramming.

A. Background: Monotone systems

First, we provide some notations and definitions for mono-
tone systems, and then summarize properties of such systems
that we leverage in this paper.

Definition 1. A partial order “<” on a set S is a binary relation
that is reflexive, antisymmetric, and transitive. That is, for all
a,b,c € S, the following are true:

(1) Reflexivity: a < a.
(i) Antisymmetry: a < b and b < a implies that a = b.
(iii) Transitivity: ¢ < b and b < ¢ implies that a < c.

Example. On the set S = R", the following are partial orders:

() e<yifa; <y forallie{l,..,n}
(i) z <y if ; < y; fori € Iy and x; > y; for j € Io,
where I; U, = {1,...,n}.

To more easily represent partial orders, we introduce the
following notation from [17]. Let m = (my,ma,...,Mmy),
where m; € {0,1}, and

m={reR": (=1)™x; >0, 1 <i<n}.

K,, is an orthant in R™, and generates the partial order <,,
defined by « <,, y if and only if y — x € K,,. We write
T <m; y when x <, y and x # vy, and z <, y when
<myand x; #y;, Vi € {1,....,n}.
We consider the system 3, of the form:

&= f(z,w), “4)

where x € X C R} and w € W C ]R%_". Let the flow of
system Y, starting from x = 2° be denoted by ¢,,(t,z°)
for t € R, with ¢,;(t,2°) being its 7*" component. If there
exists a sequence of points {¢,} such that lim, o t, — 00
and lim,, o ¢y (tn, 2°) = 2’ for some z° € X, we call 2’
an w-limit point of X,,. The set of all w-limit points of X,
for a given 2 is represented by w.,(2°). The flow of the
system with w = 0 is denoted by ¢o(t,2°). A domain X
is said to be pp,-convex if ax 4+ (1 — a)y € X whenever
z,y € X,0<a<1,and x <, y [17]. Then, we give the
following main definition of this paper, adapted from [17] for
f dependent on a parameter w.

Definition 2. System ¥, is said to be a monotone system with
respect to K, if domain X is p,,-convex and

(—1)mitm afl (z,w) > 0,Vi # j,Yz € X,Yw € WU {0}. (5)

A monotone system can be recognized by its graphical
structure. Consider a graph G, whose nodes correspond to the
states of the system, and two nodesrz’ 75 j are connected by

an edge only if at least one of ofs has a non-zero value
ox;’ am

somewhere in X. We say ¥, is sign-stable if 3 9fi for all i #+j
has the same sign for all z € X and all w € W U {0}, and
sign-symmetric if df : af =L >0, for all 4,5 and for all z € X
and w € W U {O} Then an edge between nodes i, is

positive edge if a—f > 0 and f =L >0, and is a negative edge

if 3f’ < 0 and ng <0. Then Ew is monotone in X if and
only if for every closed loop in G, the number of negative
edges is even [17]. For the networks considered in Section
II, activation edges between two nodes are positive edges,
and repression edges between two nodes are negative edges.
The network of mutual antagonism and the 2-node and 3-node
networks of mutual cooperation are sign-symmetric and sign-
stable. The graph G constructed for the two-node networks
as described above has no closed loops (with a negative
edge connecting the two nodes for the mutually antagonistic
network and a positive edge connecting the two nodes for the
mutually cooperative network), and therefore these networks
are monotone dynamical systems. The two-node network of
mutual cooperation is a monotone system with respect to the
partial order m = (0,0), and the two-node network of mutual
antagonism is a monotone system with respect to the partial
order m = (0,1).

QO



For convenience, we include Proposition 5.1 from [17]
here, adapted for f dependent on a parameter w, stated as a
Lemma. This lemma states that the flow of a monotone system
preserves the ordering on the initial condition.

Lemma 1. [17] Consider system %.,,. Let X be p,,-convex
and f be a continuously differentiable vector field on X such
that (5) holds. Let <, denote any one of the relations <,,,
<y K- If © <oy, t > 0 and ¢, (L, x) and ¢, (t,y) are
defined, then ¢, (t,x) <, ¢ (t,y) for all w e W U {0}

B. Problem definition

We consider a dynamical system X, of the form (4),
where state x € X C R’ and constant input w € R’fr“.
Subscripts denote indices, so that z = [z1,%2,...,2,], [ =
[f1, fo, -, fn], and w = [w1, ..., w,]. For every i € {1,...,n},
w; € Ri such that w; = (u;,v;), where input w; is the
positive stimulation on state i, i.e., for all z € X,w €¢ W
af‘(r @) > ( and aff(x W — 0 for all j # 4; and v; is the
negatlve stimulation on state 7, i.e.,, forall z € X,w € W
afl(“" w) <0 and af](f ) — 0 for all j # i.

The unstimulated system is 3¢ : @ = f(z,0). Let the
set of stable steady states of Yy be S, and let there be
p such isolated stable steady states. For every S € S, let
Ro(S) denote its region of attraction, i.e., Ro(S) := {zo €
X |lim¢ 0 ¢o(t, 29) = S}. We denote the i*" component of
steady state S by 5;.

We wish to reprogram the system X to a desired stable
steady state Sy € S, i.e., find constant input w, such that the
trajectory of system ¥,,, converges inside R(Sq). Then, once
the input is removed, the trajectories of system X, starting
from inside R (Sy) converge to the desired stable steady state
Sg4, so that g is reprogrammed to .S;. We formally define two
concepts of reprogramming, depending on the set of initial
conditions starting at which Xy can be reprogrammed to the
desired stable steady state S.

Definition 3. System ¥, is said to be strongly repro-
grammable to state Sy € S by input wy if wy is such that
wwd(xo) - Ro(Sd), for all 2° € X.

Definition 4. System 3 is said to be weakly reprogrammable
from some state 2° € X to state Sy € S by input wy if wy is
such that wy,, (z9) € Ro(Sq)-

In summary, weak reprogrammability deals with repro-
gramming a system from a given initial state z° to a desired
stable steady state Sg, as in Fig. 3, where the stimulated system
3., has an asymptotically stable steady state x4 € Ro(Sq)
such that lim;_, o ¢, (t, 2°) = x4. Strong reprogrammability
deals with reprogramming the system from any initial state to
the desired stable steady state Sy, such as would be the case
if z4 in Fig. 3 were a globally asymptotically stable steady
state of ,,, such that the trajectory of ¥, from any 2° € X
would converge to x.

We make the following assumptions on system >.,,:

Assumption 1. The function f(z,w) takes the form

fle,w) = [fi(z,wr), fa(z,w2), ..., fn(z,wy,)] such that
filz,w; = (ug,v;)) = hi(x) — vx; + w; — vy, where

Ro(Sq)
0
T4 ﬂbo(t7$d)
¢"-~ T, ,"
xO e ~'-"
) bu(t, 2°)

Fig. 3: Reprogramming to a desired stable steady state S;. The
red dashed arrow represents the trajectory of the stimulated system
3w and blue solid arrow represents the trajectory of the unstimulated
system Y. The stimulated system X, has an asymptotically stable
steady state x4 such that lim;— oo ¢ (t, 2°) = 24, and x4 € Ro(Sq)
so that the system X is reprogrammed to S4 under input w.

hi(z) € C', ~; > 0is a constant, and there exists an H;y; > 0
such that 0 < h;(z) < H;ps for all x € X.

Note that the above assumption is consistent with the
properties of the dynamics of GRN modules as described in
Section II.

Assumption 2. System 3, is a monotone system with respect
to some K,

Assumption 3. There exists an € > 0 such that for any w €
B(0), any steady state S(w) of 3, is a locally unique and
continuous function of w.

IV. EXTREME STABLE STEADY STATES

In this section, we show that under Assumptions 1 and 2,
the set of stable steady states S of ¥y has a maximum and a
minimum stable steady state, and further provides inputs that
are guaranteed to strongly reprogram >, to these extreme
stable steady states.

Lemma 2. Under Assumptions I and 2, the set of stable steady
states S of system ¥y has a minimum S,;, = min(S) and a
maximum Sy, = max(S) with respect to the partial order
<

—m-
Proof. Proof of this Lemma is given in Appendix B. ]

To find inputs that are guaranteed to reprogram X, to
the minimum or maximum steady states, we first define the
following two types of inputs. These input types are such that,
for every state x;, the input w; = (u;,v;) € Ri is such that
either u; > 0 and v; = 0, or u; = 0 and v; > 0. For a system
that is monotone with respect to a partial order m € {0,1}",
the value m; € {0,1} determines whether state ¢ is given a
positive input or a negative input as follows.

(i) Input of type 1: An input of type 1 satisfies the
following: for all ¢ € {1,...,n}, if m; = 0 then uw; > 0 and
v; = 0 (positive or no simulation) and if m; = 1 then u; =0
and v; > 0 (negative or no simulation). Further, at least one
node is given an input not 0.

(i) Input of type 2: An input of type 2 satisfies the
following: for all < € {1,...,n}, if m; = 1 then w; > 0 and
v; = 0 (positive or no simulation) and if m; = 0 then u; =0
and v; > 0 (negative or no simulation). Further, at least one
node is given an input not 0.



(iii) Input of type 3: An input of type 3 is any input such
that every node ¢ either has u; > 0 and v; = 0, or v; > 0 and
u; = 0, but is not an input of type 1 or 2.

For inputs of type 1 and type 2, Theorem 1 provides
guarantees for strongly reprogramming ¥y to the minimum
steady state Sy, and the maximum steady state Sp,x.

Theorem 1. Under Assumptions 1 and 2, a sufficiently large
input of type 1 ensures that ¥ is strongly reprogrammable to
the maximum stable steady state Sy, and a sufficiently large
input of type 2 ensures that Y is strongly reprogrammable to
the minimum stable steady state Sy,

Proof. Consider a w = (wy, ..., w,,) where w, = (u;,v;) such

that uw; = 2(1 — m;)H;pr, and v, = my (#1“(5) -7 ).
Then, using Lemma 1 of Appendix B, we have that for
m; = 0, lim;,o x;(t) > maxges(S;) for all z;(0). Us-
ing Lemma 2 of Appendix B, we have that for m; = 1,
limy_y o0 #;(t) < minges(S;) for all z;(0). Note that if z,y
are such that for a state where m; = 0, z; < y;, and
for a state where m; = 1, x; > y;, then © <,, y. Thus,
wy (o) >m max(S), Vg and Vu > w (element-wise) with
an input of type 1. By monotonicity, if z >,, max(S),
wo(z) = {max(S)}. Thus, wy () C Ro(max(S)) Vzo. Thus,
3 is strongly reprogrammable to max(S).

) where w, = (u;,v;) such
that uw; = 2m;H;py, and v; = (1 — my) (ﬁﬁsl) — 7).
Then, using Lemma 1, we have that for m; = 1,
limy_y o0 ;(t) > maxges(S;) for all x;(0). Using Lemma
2, we have that for m; = 0, lim;_,o 2;(t) < minges(S;)
for all z;(0). Using the same reasoning as above, we have
that wy, (x0) <, min(S), Vzp and Vu > w (element-wise)
with an input of type 2. Under Lemma 1, if z <,, min(S),
wo(2z) = {min(S)}. Thus, wy () C Ro(min(S)) Vzo. Thus,
3y is strongly reprogrammable to min(S). ]

Consider a w = (wy,...,w,

Example. Consider again the two-node network motifs of
mutual antagonism and mutual cooperation shown in Figs. la
and 1b, which are monotone with respect to the partial orders
m = (0,1) and m = (0,0), respectively, thus satisfying
Assumption 2. Their dynamics (1), with Hill-functions given
by (2) and (3), also satisfy Assumption 1. Thus, these systems
satisfy the hypotheses of Lemma 2 and Theorem 1. As
expected under Lemma 2, the set of stable steady states of
these systems have a minimum S; and a maximum S3, as
shown in Figs. 2a and 2b. Note that these minima and maxima
are defined with respect to the partial order m. For example,
consider the two-node network motif of mutual antagonism.
The partial order for this system is defined by m = (0,1),
that is * <,, ¥y <= z1 < y1,T2 > Yo. The steady-
state S7 (Fig. 2a) is then the minimum stable steady state
for this system since it has the lowest value of x; and the
highest value of x5, and the steady-state S5 is similarly the
maximum stable steady state with the highest value of x; and
the lowest value of x5. For the two-node network of mutual
cooperation, the partial order is defined by m = (0, 0), that is
T <py < x1 < y1,T2 < yo. The steady-state S; (Fig. 2b)
is then the minimum stable steady state for this system with

the lowest levels of 21 and x9, and S5 is the maximum stable
steady state with the highest levels of z; and xs.

(b) Type 2 input applied to network of
mutual antagonism

(a) Type 1 input applied to network of
mutual antagonism

+ — — +
edbe Y O

Ty

(¢) Type 1 input applied to network of
mutual cooperation

G—b

(d) Type 2 input applied to network of
mutual cooperation

S &

Fig. 4: Inputs of type 1 and 2 applied to the two-node networks of
mutual antagonism and mutual cooperation as in (1). Resulting
vector fields and stable steady states of the stimulated system X,
are shown via red arrows and solid red circles, respectively. The
regions of attraction of S, S2 and Ss (solid black circles) for
the unstimulated system >, are shown in the background in coral,
blue and purple, respectively. Parameters of the unstimulated systems
are the same as those of Fig. 2. (a) An input of type 1, with
u; = 3nMs™!, vy = 10s™' is applied to the mutual antagonism
network. This results in a globally asymptotically stable steady state
in the region of attraction of S3, and thus the input of type 1 strongly
reprograms the system to the maximum steady state S3. (b) An input
of type 2, with v; = 10s™', us = 2nMs~! is applied to mutual
antagonism network. This results in a globally asymptotically stable
steady state in the region of attraction of Si, and thus the input of
type 2 strongly reprograms the system to the minimum steady state
S1. (c) An input of type 1, with u; = 2nMs™ !, up = 1.8nMs ™! is
applied to the mutual cooperation network. This results in a globally
asymptotically stable steady state in the region of attraction of Ss,
and thus the input of type 1 strongly reprograms the system to the
maximum steady state S3. (d) An input of type 2, with v; = 4571,
ve = 65! is applied to the mutual cooperation network. This results
in a globally asymptotically stable steady state in the region of
attraction of Si, and thus the input of type 2 strongly reprograms
the system to the minimum steady state .S;.

Further, under Theorem 1, the mutually cooperative and
mutually antagonistic systems are guaranteed to be strongly
reprogrammed to their maximum and minimum steady states
using sufficiently large inputs of type 1 and type 2, respec-
tively. Since the mutual antagonism network is monotone
with respect to m = (0,1), applying a positive input on x;
(u1 > 0,91 = 0) and a negative input on X (ug = 0,v9 > 0)
constitutes an input of type 1. When such an input is suf-
ficiently large, it is guaranteed to strongly reprogram this



system to its maximum steady state Ss. This is shown in
Fig. 4a, where a large input of type 1 results in a globally
asymptotically stable steady state (shown by a red filled circle)
in the region of attraction of Ss. Thus, trajectories of the
system under this input from every initial condition converge
to this globally asympototically stable steady state. Once the
state of the system has entered the region of attraction of Ss,
and the input is removed, the trajectory of the unstimulated
system converges to Ss, so that the unstimulated system
is reprogrammed to Ss3. Similarly, applying a sufficiently
negative input on x; (u;3 = 0,v; > 0) and a sufficiently
large positive input (ug > 0,v2 = 0) on X5 (an input of
type 2), results in a globally asymptotically stable steady
state in the region of attraction of S7, the minimum steady
state of the system. Thus a sufficiently large input of type 2
strongly reprograms this system to S; as shown in Fig. 4b.
For the mutual cooperation network, which is monotone with
respect to m = (0,0), a sufficiently large positive input on
both nodes (ui,us > 0,v1 = vy = 0, an input of type
1) strongly reprograms the system to the maximum steady
state S3, and a sufficiently large negative input on both nodes
(w1 = ug2 = 0,v1,v2 > 0, an input of type 2) strongly
reprograms the system to the minimum steady state S;. This
is illustrated in Figs. 4c and 4d.

Thus, a general n-dimensional monotone dynamical sys-
tem has a minimum and a maximum stable steady state, by
Lemma 2. Further, the network structure of such a system can
be used to determine the partial order m with respect to which
it is monotone. Based on m, inputs can be determined that are
guaranteed, when sufficiently large, to strongly reprogram the
system to the minimum or maximum stable steady states by
Theorem 1.

V. INTERMEDIATE STABLE STEADY STATES

The previous section provided inputs, based on the net-
work structure of Xy, that are guaranteed to reprogram Xy to
its extreme stable steady states. In this section, we address
the problem of reprogramming 3, to its non-extremal, or
intermediate, stable steady states. First, we show via Theorem
2 that inputs of type 1 and type 2 are not good candidates
to reprogram Y, to its intermediate stable steady states. Next,
we consider inputs of type 3, and show via examples that
this type of input is not guaranteed to reprogram the system
to the desired intermediate stable steady state. Finally, we
provide results that can be used to prune the input space while
searching for inputs that reprogram a monotone system to its
intermediate stable steady states.

A. Reprogramming to intermediate stable steady states using
type 1, type 2 or type 3 inputs

The following results show that inputs of type 1 and type
2 cannot strongly reprogram X to an intermediate steady state
(Theorem 2), and that inputs of type 1 and type 2 may not be
able to weakly reprogram Xy to an intermediate steady state
(Theorem 3).

Theorem 2. Under Assumptions I and 2, for any input of type
1 (type 2), system X is not strongly reprogrammable to any
steady state S % Spax (S # Smin)-

Proof. Consider the extended system X! : & = f(z,w),w =
0. Notice that for any input wgy of type 1, wo >mx—m 0.
Note that the following initial conditions are ordered, i.e.,
(max(S),0) <mxmx—m (max(S),wy). Since (max(S),0) is
a steady state of the extended system, by the monotonicity
of the extended system (Proposition III.2 of [19]), we have
that max(S) <,, ¢@u,(t, max(S)), under Lemma 1. Hence,
Wi, (Max(S)) >, max(S).

We now consider the system Xo: © = f(x,0), starting
at an initial condition z >,, max(S). By the monotonicity
of ¥, we have that wy(z) >, max(S), under Lemma 1.
Since wy(z) C S, we have that wy(z) = {max(S)}. Thus, for
any z >, max(S), z € Ro(max(S)). Thus, w,,, (max(S)) C
Ro(max(S)). That is, for the system ¥, with an input of type
1, any trajectory starting at max(S) will converge to a steady
state in the region of attraction (for ¥y) of max(S). Thus, ¥
is not strongly reprogrammable to any steady state other than
max(S), since there exists an xg such that w,, (o) € Ry (5),
for all S' # max(S).

The proof for type 2 inputs (wg <,,x—m 0) and the steady
state min(S) follows similar to above. |

Theorem 3. Consider two steady states S, Sy € S, and let ¥,
satisfy Assumptions 1 - 3. Then, there exist a pair w',w" €
Ri" such that for an input of type 1 (type 2) with w < w' or
w > w”, X is not weakly reprogrammable from S to Sy if

Sd 7é Smax (Sd 7é Smin)-

Proof. Consider w with w close to 0. Under Assumption 3,
x(w) is a locally unique solution to f(x,w) = 0; further-
more z(w) is a continuous function of w. Therefore, for w
sufficiently close to 0, we will have that z(w) is close to
S. We can thus pick w small enough such that z(w) is in
the region of attraction of S. Therefore, there is an input w’
sufficiently close to zero such that if w < w’, the system is
not reprogrammed from S to S;. The fact that there exists
a w” sufficiently large that if w > w”, the system is not
reprogrammed to S but in fact to Sy (or Spin) for an input
of type 1 or type 2 follows from Theorem 1. |

According to this theorem, if an input of type 1 (type 2)
is too large or too small, it cannot weakly reprogram X to an
intermediate (non-extremal) steady state. Further, depending
on the parameters of Yg, w’ and w” could be very close, and
in fact, it is possible that w’ > w”, in which case, no input
value of type 1 (or type 2) could weakly reprogram the system
from S to Sy. This situation is demonstrated for the mutual
cooperation network below.

Example. We seek to weakly reprogram the network of
mutual cooperation from stable steady state S; to the inter-
mediate, stable steady state S3, as shown in Fig. 5. From this
figure, we see that as the positive inputs u; and/or us are
increased, the stable steady state in the blue region (region
of attraction of the desired state S2) disappears before the
stable steady state in the coral region (region of attraction
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Fig. 5: Inmput of type 1 applied to the network of mutual
cooperation to attempt to weakly reprogram it from S; to S> (big
black circles). Increasing u; and/or us (the positive input on nodes
x1 and X2, respectively) changes the shape of the nullclines ©; = 0
and/or 2 = 0 such that the stable steady state in the blue region
(Ro(S2)) disappears before the stable steady state a*(w) (small red
circles) in the coral region (Ro(S1)). Finally, for large w1 and/or
large u2, only a stable steady state in the purple region (Ro(S3))
remains.

of S1). We call the stable steady state of system X, in the
coral region a*(w). Finally, when w; and/or us are sufficiently
large, the stable steady state in the coral region also disappears,
leaving only a globally asymptotically stable steady state in
the purple region. We call the stable steady state of system
%, in the purple region b*(w). Then, for any non-zero input
w of type 1, that is, with ui,us > 0 and v1 = vy = 0,
the trajectory of the stimulated system X, starting from the
stable steady state S; converges to a*(w), if it exists, or to
b*(w) once a*(w) disappears. After the input is removed,
the trajectory of the unstimulated system starting from a*(w)
converges to 57 (since a*(w) € Ro(S1)), and the trajectory
of the unstimulated system starting from b*(w) converges to
Ss (since b*(w) € Ro(Ss3)). Thus, for any input of type 1, the
system starting at S either converges back to Sy (for a small
input of type 1), or is reprogrammed to S5 (for a large input
of type 1). Thus, there is no input of type 1 that can weakly
reprogram the system from S; to Ss.

Thus, inputs of type 1 and type 2 are not good candidates
to reprogram Y, to a desired intermediate steady state. In
the next example, we apply inputs of type 3 to the two-node
system of mutual antagonism to demonstrate that these may
be promising.

Example. We apply inputs of type 3 to the network of mutual
antagonism to reprogram this system to its intermediate steady
state So, and present the results in Fig. 6. For this system, a
positive input on both nodes (u1,us > 0,v1 = v = 0) or a
negative input on both nodes (u; = us = 0,v1,v2 > 0) are
inputs of type 3. As seen from Fig. 6a, applying a positive
input to both nodes results in a globally asymptotically stable
steady state in the region of attraction of S5, and therefore
the system is strongly reprogrammed to .S;. When a negative
input is applied to both nodes (Fig. 6b), the resultant globally
asymptotically stable steady state is in the region of attraction
of S3, and this input also strongly reprograms the system to
Sa.

While potentially more promising than inputs of type 1
and 2, whether inputs of type 3 can reprogram a monotone

Type 3 inputs applied to network of mutual antagonism

Fig. 6: Inputs of type 3 applied to the two-node network of
mutual antagonism as in (1). Resulting vector fields and stable
steady states of the stimulated system are shown in red. The regions
of attraction of Sq, Sz and S3 for the unstimulated system X, are
shown in the background in coral, blue and purple, respectively. (a)
An input of type 3, with u; = 3nMs™ ', uz = 2nMs ™! is applied to
the mutual antagonism network. The resulting globally asymptotically
stable steady state is in the region of attraction of Sz, and thus the
input of type 3 strongly reprograms the system to the intermediate
steady state So. (b) An input of type 3, with v; = 8s™%, vp = 12s7"
is applied to the mutual antagonism network. This results in a globally
asymptotically stable steady state in the region of attraction of Sz,
and thus this input of type 3 strongly reprograms the system to the
steady state So.

system to its intermediate steady states depends on the specific
parameters. Here, we wish to provide parameter-independent
rules for finding an input that is guaranteed to reprogram the
system 3 to a desired intermediate steady state.

B. An input space for reprogramming to intermediate steady
states

In this section, we describe an input space W C R%r” that
is guaranteed to contain an input that strongly reprograms the
system X to a desired intermediate steady state. Further, we
provide results to guide the search for such inputs in this input
space. To this end, we introduce the notion of static input-state
characteristic [19]:

Definition 5. A controlled system & = f(z,w), ¢ € X,w €
W is said to be endowed with a static input-state characteristic
¢(+) : W — X if for each constant w € W the system has a
globally asymptotically stable equilibrium c(w).

Given our system in the form of Assumption 1, we make
the two following additional assumptions.

Assumption 4. All first derivatives of the function h(z) are

bounded, that is, | 222 | < hyp0 Vr € X and all 4,5 €
J

{1,...,n}.

Assumption 5. For all ¢ = {1,...,n}, there exists a ¢; > 0

such that ag"f’) +D i 82;(?’) <, for all x € X such that
XTi > C;.

Note that Assumptions 1 and 4 are naturally satisfied for
all gene regulatory networks modeled using the Hill-function
representation of gene expression regulation [47]. An easily



checkable case where Assumption 5 is satisfied for state @
is when x; is self-regulating, i.e. % # 0, and z; does
so without the need to cooperate with other species. In such
cases, as x; becomes large, ah (I) approaches 0, and so there
exists a c; large enough Where the condition is true.

We now describe the input space, which, as we shall prove,
is guaranteed to contain an input that reprograms the system
3o to any desired intermediate steady state Sy. Consider a
bounded input space, that is, let u,,; be the maximum positive
input applied to state x; such that 0 < u; < uyy,;, and let v,,;
be the maximum negative input applied to state x; such that
0 < v; < vp;. We define W C R3™ as follows:

W =Wy x Wy x ... x W,, =1III"_; W, where
Wi = {w; = (g, )]0 < uy < Upiy Vi = Vpni }

U {w; = (4, 03) |t = Umi, 0 < v; < Ui}

(6)

»U;

Ui

Fig. 7: The set W, defined in (6) shown by the bold black
lines — note that only the uppermost and rightmost boundaries
of the box are included in W;.

The input space W is illustrated in Fig. 7. In essence, any
input in this space is such that for any state x; either we apply:
(i) the maximum positive stimulation w,,; and a negative stim-
ulation that can vary in [0, vy,], or (i) the maximum negative
stimulation v,,,; and a positive stimulation that can vary in
[0, ;). Note that this input space is n-dimensional, reduced in
dimensionality compared to the original 2n-dimensional input
space, where u; and v; could be varied simultaneously.

The following results are true for the input space above.

Lemma 3. Under Assumptions 1, 4 and 5, for the input
domain W as defined by (6), there exist Un;, Um; Sufficiently
large for all i € {1,...,n} such that the system ¥, has a
static input-state characteristic c: W — X.

Proof. Proof using contraction theory [48] provided in Ap-
pendix A. ]

Lemma 4. Let §; > 0 be a small constant such that
d; < minges(S;), and B := {z|minges(S;) — §; < x; <

’M , Vi € {1,...,n}}. Under Assumptions 1, 4 and 5, there
exlst a umz,vml sufficiently large for all i € {1,...,n} such
that, for every ' € B, there exists an input w' € W such that
c(w') =2

Proof. Proof using the intermediate value theorem provided
in Appendix A. |
We now present the first main result of this subsection.

Theorem 4. Let Assumptions 1, 2, 4 and 5 hold, and let input
space W be defined by (6). Then, there exist sufficiently large
Umi, Umi for all i € {1,...;n} such that the following holds:

(i) System X, has a static input-state characteristic c :
W — X.

(ii) For any desired stable steady state Sg of X, there exists
an € > 0 such that B.(Sq) is contained in the image of
c: W — X.

Proof. (i) Follows directly from Lemma 3.

(ii) We show that for all S' € S, there exists an € > 0 such
that B.(S) is contained in box B defined in Lemma 4, i.e.,
B.(S) C B. For this, we see that any equilibrium S of X
must satisfy: f;(S,0) = h;(S) —v;S; = 0. Thus, S; = TS’)
Under Assumption 1, 0 < h;(S) < H;ps. Thus, 0 < S; <

,;M By definition, S; > minges(S;). Thus, for all ¢, S; €
(minges(S;) — d; I{WM) Let € < min{S; — (minges(S;) —
3i)s ,;M S;}. Then, B.(S) C B. Then, from Lemma 4, we
have that there exists a w € W such that ¢(w) = x € B.(S) C
B. |

Under Assumptions 1, 2, 4 and 5, and for w,,;, Um;
sufficiently large, the input space W is guaranteed to contain
an input wy that strongly reprograms X to Sy. Note that, for
the full space II7_; [0, U] X [0, vmy], the existence of an input-
state characteristic is not guaranteed. In fact, for inputs very
close to 0, ¥, would be multistable, since > is multistable.
The existence of an input-state characteristic is essential to
provide rules that prune the input space in search of an input.

Next, we make use of Theorem 4 and the monotonicity of
>0, to present some results that guide the search for inputs that
strongly reprogram the system X, to a desired stable steady
state Sy. For a search procedure, we assume that we are given
a simulator (or experimental setup), that is able to simulate
the system from a given initial condition and for a given input
for a finite pre-set time. The procedure applies inputs for the
pre-set time interval, and then checks whether the state of the
system, once the input is removed, approaches, in a pre-set
finite time, an e-ball around the target state Sy. Since Sy is an
asymptotically stable equilibrium point, if the state enters an
e-ball around it and e is sufficiently small, then the state will
approach S;. It is therefore useful to introduce the notion of
e-reprogramming as follows.

Definition 6. System Yy is said to be strongly e-
reprogrammable to state Sgq by tuple (wq,T1,T>), where
wq € Rin and 1,15 € R+, l'f(i)()(frz7 d)wd (Tl,lﬂo)) S Be(Sd),
for all z° € S.

A search procedure would then produce a tuple
(wgq,Ty,T) that strongly e-reprograms Yo to Sy, given a
desired € > 0 and S,.

Next, we present results for the input space W, based on
the definition of e-reprogramming.

Lemma 5. Let the hypotheses of Theorem 4 hold for %.,,. For
any € > 0 and Sy € S, there exist a wg € W and T{,T4 > 0,
such that for all Ty > T{ and for all Ty > T} (wa, T1,T»),
strongly e-reprograms Y to Sg.

Proof. Proof provided in Appendix B. ]

Next, we present the final result of this section.



Theorem 5. Let Sy € S. Let w®, w® € W and Ty, T, > 0
be such that tuples (w®, Ty, Ty) and (w®, Ty, Ty) strongly e-
reprogram Yy to S% # Sd and S® # Sy, respectlvely, for
0 < e < Minsresming [Sa=Si| 7y, if there exists a w' € W
such that (w', Tl,Tg) strongly e-reprograms Yo to Sy, and
W <px—m W < — mw then

S & Sy L S (7

Proof. We show this by contradiction as follows. Suppose
for some i € {l1,..,n} where m; = 0 we have that
Sai < S¢. Since S* # Sy, it is then true that S —
S4i > mingresmin; [Sg — S” That is, Sq — S¢ <
— ming/cs min; |Sdz_SZ/‘ Let ¢p® := ¢0(T27 Dua (Tl, x0>) and
(b/ = ¢Q(T2, (;bw’ (Tl, J}O)) Since (UJQ7 Tl, Tg) and (w', Tl, Tg)
strongly e-reprogram X to S* and Sy, respectively, we have
that ¢* € B.(S*) and ¢’ € B.(Sq). Then, ¢, — ¢% = (¢ —
Sai)+(Sai — S+ ( ng“) < 2¢ —ming s min,; | Sy — S|
Since ¢ < Zs’es M 1848 , this 1mphes that ¢} — ¢¢ < 0,
that is ¢, < ¢%. However, since w® <;x_m, w', under
Assumption 2, it must be that ¢* <,, ¢'. Since m; = 0 ,
it must be that ¢f < ¢’¢’ which is a contradiction. Thus, for
no i € {1,...,n} with m; = 0 can we have Sy < S%. It can
similarly be show that for no i € {1,...,n} with m; = 1 can
we have Sg4; > S7. Thus, it must be that S* <, Sq.

It can be similarly shown that it must be that S; <,
S, n

Theorem 5 provides a necessary condition that must be
satisfied by any input w’ that strongly e-reprograms Xy to
Sq4. This can be leveraged in a search procedure. In Appendix
C, we provide an example of a search procedure that looks
for an input tuple (wq, T, T%) that strongly e-reprograms the
two-node system of mutual cooperation to its intermediate
stable steady state. The search procedure starts with an initial
guess for 77,75 and Np,. It iteratively discretizes W for
Nmax iterations and tries the inputs at the grid-points. Theorem
5 is then used at each iteration to eliminate parts of the
input space. Specifically, consider previously tried inputs w®
and w® that strongly e-reprogram the system to S¢ and S°,
respectively. Then, if (7) is not satisfied, we can remove all
inputs w’ that satisfy w® <,, w’' <,, wP. If Npa, iterations
are completed without finding a solution, the procedure restarts
after increasing 77, 15 and Np.x. This process is guaranteed
to successfully find an input tuple (wgq,T7,7T5) that strongly
e-reprograms the system to the desired steady state.

VI. EXAMPLE APPLICATION

In this section, we reprogram the three-node network motif
of mutual cooperation, shown in Fig. 1c. The dynamics of this
system are modeled as in (1), where n = 3, and

hl(x) _ 7]1+a1If+b12$§+b131§+alzzfzg+c23ﬂ?§$§
1+zi+diows+diszitersaias+kozwias
hg(z) _ 772+a2I§+b21xf+a21mffv§+bzsmg 8)

14ax3+do123+dosziteniazic
h (:l?) _ matazzitbsizitaziziaitbaaws
3\Y) T T1taf+dsialtdsaaltesiwial

indicating that the production rates of x1, X2, and X3 increase
with z1, 22 and z3. For certain parameter values, this system

of ODEs has 3 stable steady states, as illustrated in Fig. 8.
This network motif is commonly used to model the core
pluripotency network, where xi1, x5 and z3 represent the
concentrations of the Oct4, Sox2 and Nanog genes. In this
model, given the relative values of the proteins at these steady
states, we may view the steady state S; as representing
the endoderm lineage, S; as representing the trophectoderm
lineage and S5 as representing the pluripotent state [35]-[41].
We now search for inputs that reprogram this network to its
steady states, using the results of this paper.

We note that this system satisfies Assumption 1, since
the dynamics obey the functional form required by this as-
sumption. Further, since ngj > 0 for all i # j, the system is
monotone with respect to the partial order m = (0, 0, 0). Thus,
this system also satisfies Assumption 2. Then, this system must
satisfy Lemma 2, and indeed it does, as seen in Fig. 8b, where
the minimum steady state is S5, and the maximum steady state
is Sl.

Fig. 8: A specific instance of the three-node network of mutual
cooperation. (a) The three-node network motif of mutual cooper-
ation. (b) Steady states and vector-field of system (1) for n = 3
and Hill-functions given by (8). Parameters of this system are:
m =12 = N3 = 10_4, Y1 = Y2 = Y3 = 1, a; = 1, b12 = 0147,
b13 = 0.073, C12 = 1.27, C13 = 0.63, d12 = 0.67, d13 = 0.34,
€12 = 0.67, €13 = 0.34, as = 1.6, b21 = 0.14, b23 = 0.8, C21 = 4,
dQ = 0.67, d21 = 1, d23 = 0.34, €21 = 1, as = 0.816, b31 = 0.143,
b32 = 1.616, C31 = 4.08, d3 = 0.34, d31 = 1, d32 = 0.67, €31 = 1.
For this set of parameters, the system has three stable steady states
S1, S2, and S3, shown by black dots. The vector field (z1, 2, 23)
is shown by the blue arrows, and is normalized for visualization.

A. Reprogramming to S

We first strongly reprogram this system to the maximum
steady state S7. Under Theorem 2, a sufficiently large input
of type 1 is guaranteed to strongly reprogram this system
to the maximum steady state, S;. For this system, since
m = (0,0,0), inputs of type 1 are inputs where a positive
stimulation is applied on each node, that is, where u; > 0 for
1 =1,2,3 in (1). We apply such an input to the system, and
results are shown in Fig. 9. The steady state of the stimulated



system >, under this input is globally asymptotically stable,
and lies in the region of attraction of S; (Fig. 9b). Once the
trajectories of the stimulated system converge to this stable
steady state, the input is removed. Then, the trajectory of the
unstimulated system Yy, starting from an initial condition in
the region of attraction of S, converges to Sy, and the system
is reprogrammed to S7 (Fig. 9c).
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Fig. 9: Input of type 1 applied to the three-node network of
mutual cooperation. A sufficiently large input of type 1 is used
to strongly reprogram the 3-node mutual cooperation network to its
maximum steady state S1. (a) An input of type 1 for this system is
a positive input on each node. (b) A sufficiently large input of type
1, in this case w such that w; = (2,0), we = (2,0), ws = (2,0)
results in a globally asymptotically stable steady state, shown by the
solid red dot. (c) The globally asymptotically stable steady state of
the stimulated system is in the region of attraction of S;, and once
the input is removed, the unstimualted system converges to Si.

B. Reprogramming to Ss

Similarly, under Theorem 2, we strongly reprogram the
system to its minimum steady state Sy using an input of type
2. For this sytem, inputs of type 2 are inputs where all the
nodes are given a negative input, that is, v; > 0 fori =1,2,3
for (1). Under Theorem 2, a sufficiently large input of type
2 is guaranteed to strongly reprogram the system to S5. We
demonstrate this in Fig. 10. As seen in Figs. 10b and 10c, a
large input of type 2 results in a globally asymptotically stable
steady state in the region of attraction of Sy. Thus, under this
input, the system is strongly reprogrammed to S5 in the sense
of Definition 3.

C. Reprogramming to Ss

Finally, we reprogram this system to its intermediate stable
steady state .S3. To apply the results of Section V, Assumptions
4 and 5 must be satisfied. Since h;(x) is a Hill-function,
the partial derivatives are bounded, satisfying Assumption 4.
Assumption 5 is verified numerically for this system. We apply
the search procedure outlined in Appendix C, and described
briefly at the end of Section V. Initial guesses for 77, T» and
Nmax are chosen arbitrarily. The procedure returns an input
tuple (wq, T1,T3) that strongly e-reprograms the system to g
after trying 443 input tuples. The results are shown in Fig. 11.
When the space is searched without using the elimination
condition of Theorem 5, 5976 input tuples have to be tried
before the solution is found. Note that since the initial 7% and
T5 were chosen arbitrarily, they were not large enough, and
the initial set of iterations failed to return a solution. 77 and

Fig. 10: Input of type 2 applied to the three-node network of
mutual cooperation. A sufficiently large input of type 2 is used
to strongly reprogram the 3-node mutual cooperation network to its
minimum steady state S>. (a) An input of type 2 for this system is a
negative input on each node. (b) A sufficiently large input of type 2, in
this case w such that w; = (0, 100), w2 = (0, 100), ws = (0, 100)
results in a globally asymptotically stable steady state, shown by the
solid red dot. (c) The globally asymptotically stable steady state of
the stimulated system is in the region of attraction of S2, and once
the input is removed, the unstimualted system converges to S5.
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Fig. 11: Input tuple strongly e-reprograms three-node mutual
cooperation network to Ss;. The search procedure outlined in
Appendix C is used to find an input tuple that e-reprograms the
three-node mutual cooperation network to the intermediate stable
steady state Ss3. The procedure is initialized with n = 3, upm1 =
Um2 = Umz = 120, Um1 = 7, Um2 = Um3 = 20, Sq = S,
m = (0,0,0), S = {S1, 52,53}, € = 0.01. We run the procedure
with two sets of guesses. The first set is picked arbitrarily with
T1 = 100,72 = 100 and Nmax = 1. This procedure tries a total of
108 input tuples, and a total simulation time of 56600s, before finding
a solution (wgq, 11, T2) with wg1 = (0, Vm1), waz = (Um1/4,Vm1),
wgs = (0,vm3), and Ty = T» = 400s. Without the elimination
condition, the procedure tries a total of 334 input tuples, with a
total simulation time of 201000s. The second set of initial guesses
is 71 = 10, 75 = 10 and Nmax = 1, which tries a total of 443
input tuples, and a total simulation time of 63900s, before finding
a solution (wgq, T1,T2), where wq is the same as found before, and
T1 = T5 = 160s. Without the elimination condition, the procedure
tries a total of 5976 input tuples, with a total simulation time of
908180s. (a) The input wq is applied to the network as in (1) for
time 77 = 400s. The end points of the trajectories starting at S1,
So, S3 and Sy are close to the globally asymptotically stable steady
state of the stimulated system. (b) The input is removed, and the
unstimulated system is simulated for time 7% = 400s. The system
converges e-close to desired steady state Ss.

T, were increased in subsequent iterations (as described in
Section V and Appendix C). When a larger guess for 77 and
T5 is used, the same input is found in 108 tries. However,
note that since the solution in the first case involves smaller



T and T5, the total simulation time in both cases is still about
the same. In the first case the total simulation time is 56600s,
and the total simulation time in the second case, where T}
and 75 were much higher, is 63900s. For both sets of initial
guesses, the search procedure terminates after trying far fewer
input tuples than if it had not used the elimination condition
of Theorem 5.

VII. CONCLUSIONS

In this paper, we presented parameter-independent strate-
gies for choosing inputs to reprogram a monotone dynamical
system to a desired stable steady state. Specifically, we consid-
ered monotone systems in a form that is commonly found in
gene regulatory networks. In these networks, the mathematical
problem of reprogramming the system to a stable steady state
embodies the practical problem of artificially inducing cell fate
transitions. In such a problem, stable steady states correspond
to cell fate phenotypes and reprogramming can be performed
by using appropriate, biologically feasible input stimulations.
Positive input u; can be applied by increasing the rate of
production of protein z; by infecting the cells with genes that
express that protein [49]. Negative input v; can be applied
through the enhanced degradation of the protein, typically
achieved using miRNA or shRNA molecules [50].

Our results use the order preserving properties of the flow
of a monotone dynamical system and provide criteria for
choosing appropriate input strategies depending on whether
the target stable state is extremal or intermediate. For ex-
tremal stable steady states, one can choose extremal (in an
appropriately defined partial order) inputs to reprogram the
system to such states. For intermediate stable steady states,
we introduce an input set that is guaranteed to have an input
that reprograms the system to any desired intermediate steady
state. We further define the notion of e-reprogramming for a
search procedure. We use this definition to provide results to
guide a pruning strategy to decrease the input search space.
In practical applications of cell fate reprogramming, often the
desired state consists of a range of values due to noise [51],
[52], and € could be set such that the e-ball is within this
range.

The results presented here serve as a first step in providing
a general strategy for reprogramming GRNs to a desired
stable steady state. Monotone dynamical systems are highly
represented in the core networks that control cell-fate deci-
sions, and in particular, the motifs of mutual antagonism and
mutual cooperation shown here are seen at several decision-
points along the cell development process [3], [5]. Although
network motifs provide a way to abstract the problem of cell
fate transition and control, it may be an oversimplification of
the biological reality, as has been argued in [53], [54], [55].
Additionally, while in this paper, we have studied the network
dynamics using Hill-function models [42], [43], [44], there
are other models that describe such networks, such as Boolean
models of GRNs [56]. Further, our theoretical results are valid
for monotone systems, and while the core GRNs controlling
cell fate are monotone, they are often embedded in larger,
possibly non-monotone networks. The validity of these results
in these scenarios is left for future work.
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