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Abstract— A genetic toggle switch, a bistable gene-regulatory
network, has many biotechnology applications, from environ-
mental sensing to therapeutics. In order for a toggle switch
to be practically useful, it should be able to maintain either
of its states for a sufficiently long time. While a number of
bistable circuit designs have appeared, it remains a challenge
to control the duration of memory of the two states due to
the presence of noise. To address this problem, we propose a
bacterial toggle switch design that is inspired by a chromatin
modification circuit ubiquitous in mammalian systems. We
specifically propose a bacterial implementation based on two
DNA invertases, in which each invertase is auto-catalyzing
its own expression while also catalyzing the other invertase’s
repression. We perform a mathematical analysis of the time
to memory loss of the circuit’s stable states in a simplified
stochastic model of the system. Our analysis shows that we can
increase the time to memory loss by increasing the expression
rates of the invertases, allowing to design the circuit for long-
term memory. As a comparison, we also analyze two additional
designs based on invertases, a published one, and a simpler
version of our design. We demonstrate that for these circuits,
there is no design parameter that allows to extend the time
to memory loss, thereby highlighting structural properties of
our design necessary for long-term memory. We validate the
theoretical findings by stochastic simulations of the full set
of reactions describing the circuits. More broadly, our results
provide criteria for designing long-term memory toggle switches
in bacteria.

I. INTRODUCTION

Genetic toggle switches have been used for various ap-
plications in biotechnology, including the development of
a genetic timer [1], the construction of a synthetic genetic
clock [2], and the formation of biofilms in response to
engineered stimuli [3]. In many applications, it is highly
desirable that the toggle switch maintains the memory of the
input stimulus for long time, such as in sensing applications
in the environment or in the gut [4] [5].

A class of toggle switch designs that appeared in the liter-
ature is based on DNA invertases [6] [7]. A DNA invertase
irreversibly flips the orientation of a DNA sequence and,
as such, provides a potential way to trigger an irreversible
state change, thereby allowing long-term memory. By using
two such invertases to flip the same sequence of DNA (a
promoter, for example) in two opposite directions (Fig. 1(a))
is thus possible to create a switch that can be toggled between
two states. Specifically, the state can be toggled by transiently
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inducing the expression of one invertase or the other [6].
However, despite the irreversibility of the DNA invertase
flipping, this type of design looses memory rather quickly
(less than three days) due to leaky expression of the DNA
invertases. Although leaky expression of the invertases can
be reduced to some extent, it cannot be set to zero.

We tackle this problem by proposing a design where
easily tunable circuit parameters can be adjusted in order to
attenuate the effect of the leakiness on the time to memory
loss. Specifically, we draw inspiration from a nucleosome
modification circuit, implied in epigenetic cell memory [8].
This circuit is constituted of a set of coupled enzymatic
reactions that modify nucleosomes in either of two opposing
states. These two nucleosome states auto-catalyze and also
cross-catalyze the de-modification of the opposing state. All
modifications are subject to some basal (leaky) rate. This
circuit structure has been shown to lead to a bistable system
and to long-term memory despite leakiness and noise since
the effect of leakiness can be minimized when the auto
and cross catalysis reaction rates become large compared
to leakiness [9]. Given that the process by which DNA
invertases flip a DNA sequence can be well captured by
an enzymatic reaction, we propose to realize this enzymatic
circuit motif by means of two DNA invertases as shown
in Fig. 1(b). To better shed light on the core mechanism
by which long-term memory is achievable, we also analyze
a simpler design, which removes one of the DNA states
(Fig. 1(c)).

In all cases, we start the analysis with the full set of
reactions, we then write the corresponding ordinary differ-
ential equation (ODE) models, for which we perform both
stability analysis and model order reduction using time scale
separation. Specifically, in all cases, we reduce the model to
a generalized birth and death process, whose corresponding
Markov chain can be analytically solved for the time to mem-
ory loss. In all designs the time to memory loss decreases
with leakiness. In our new design only, the time to memory
loss can be arbitrarily increased by increasing the production
rates of the DNA invertases. We then validate the analytically
predicted trends by performing stochastic simulations of the
original full set of reactions.

The remainder of this paper is organized as follows:
Section II describes the construction of toggle switch in [6]
and our toggle switches. Section III provides mathematical
analyses of the toggle switch designs using deterministic
models. Section IV provides mathematical analysis of the
time to memory loss using a stochastic model. The results
from Section IV are supported by numerical simulations in



Section V. Finally, Section VI concludes the paper.

II. CONSTRUCTION OF A TOGGLE SWITCH USING A PAIR
OF DNA INVERTASES

Fig. 1: Diagrams of toggle switch designs. (a) Diagram of
the circuit in [6]. The D1 state can be flipped to the D2 state
by a DNA invertase Y and the D2 state can be flipped back
to the D1 state by another DNA invertase X. X and Y can be
produced by an inducible expression system with production
rate constant I1 and I2, respectively, and it can be diluted
with dilution rate constants δ1 and δ2, respectively. There
is a basal level expression of X and Y with rate ∆I1 and
∆I2, respectively. (b) Three-state auto-catalytic design. The
baseline DNA D state can be flipped to the D1 state and D2

state by the DNA invertase X and Y, respectively. D1 and D2

can be flipped back to D by another DNA invertase Y and
X, respectively. X and Y can be expressed in the D1 state
and the D2 state, respectively (two autocatalytic structures).
(c) Two-state auto-catalytic design (simplified version of (b)
by removing the intermediate stated D). The D2 state can be
flipped to the D1 state by the DNA invertase X, and X can
be expressed in the D1 state (the first autocatalytic structure).
Also, the D1 state can be flipped to the D2 state by the other
DNA invertase Y, and Y can be expressed in the D2 state
(the second autocatalytic structure).

A pair of complementary irreversible DNA invertases,
FimE and HbiF, operates as follows [6] [10]. When one
invertase flips the DNA, it constructs the recognition site
for the other and viceversa. To be more specific, FimE
recognizes the DNA sequence (A1, A2) and (B2, B1), where
A1, A2, B1, B2 are given DNA sequences, and flips the
entire DNA sequence from A2 to B2. Then HbiF recognizes
the DNA sequence (A1, B̄2) and (Ā2, B1), where B̄2 is the
flipped B2 sequence, and Ā2 is the flipped A2 sequence,
which results in HbiF flippling back the entire DNA sequence

from B̄2 to Ā2 [6].
In [6], the authors built a toggle switch with FimE and

HbiF, which can be represented by the diagram in Fig. 1(a).
From the D1 state, HbiF (Y) can recognize the sequence
(A1, B̄2) and (Ā2, B1) and flip the entire DNA sequence
from B̄2 to Ā2, and the D1 state is flipped to the D2 state.
From the D2 state, FimE (X) can recognize the sequence
(A1, A2) and (B2, B1) and flip the entire DNA sequence
from A2 to B2 and the D2 state is flipped to the D1 state.
To flip the state from D1 to D2, or viceversa, Y or X must
be overexpressed from its corresponding inducible promoter,
represented here by a production rate I . Here, ∆I represents
the leakiness of expression of the inducible promoters. In [6],
it was shown that this toggle switch loses its memory in 2
days because both invertases are continuously expressed due
to basal expression, even it is not intended.

To overcome this issue, we propose a toggle switch design
inspired by chromatin modification circuits [9] and use the
same DNA invertases, as above (Fig. 1(b)). In this design,
FimE (X) can recognize the sequence (A1, A2) and (B2, B1)
present in the D state and flips it to the D1 state. From
the D1 state in turn, FimE is expressed, thereby creating
an autocatalytic loop. Then, from the D1 state, HbiF can
recognize the sequence (A1, B̄2) and (Ā2, B1), and flips it
back to the baseline DNA D state. Also, from the D state,
HbiF can recognize the sequence (A1, B̄2) and (Ā2, B1),
and flips it to the D2 state. From the D2 state, HbiF (Y) can
be expressed, thereby creating a second autocatalytic loop.
Then, from the D2 state, FimE in turn, can recognize the
sequence (A1, A2) and (B2, B1), and flips it back to the
D state. In addition, to externally trigger a state change,
X and Y are each expressed by inducible promoters as in
the previous design. In order to better determine the critical
circuit’s requirement for long-term memory, we also analyze
a simplified design, in which the baseline DNA state D is
not present (Fig. 1(c)). In the next section, we introduce
the mathematical models of these systems for subsequent
analysis.

III. STABILITY ANALYSIS OF THE TOGGLE SWITCH
DESIGNS AND MODEL REDUCTION

A. Mathematical model of the design in Fig. 1(a)

This is a design that was proposed in [6] as a way to
keep persistent expression of either one of two possible gene
expression states. Based on Fig. 1(a), the reactions can be
written as

D1 + Y
a−→ D2 + Y, D2 +X

b−→ D1 +X,

X
δ1−−−−−⇀↽−−−−−

I1+∆I1

∅, Y
δ2−−−−−⇀↽−−−−−

I2+∆I2

∅,
(1)

where, D1 is the first state, D2 is the second state, X is the
first invertase that flips D2 to D1 with flipping rate constant
b, Y is the second invertase that flips D1 to D2 with flipping
rate constant a. Here, δ1 and δ2 are dilution rate constants of
X and Y, respectively, I1 and I2 are production rate constants
of X and Y due to external induction of the invertases,
respectively, and ∆I1 and ∆I2 are basal expression rate
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constants of X and Y, respectively, or leakiness, which in
an ideal system should be exactly zero. In practice, however,
the genes that are expressing X and Y, even if inducible, will
always have a low level of expression. Therefore, we analyze
how non-zero leakiness affects the stability properties of the
system.

From (1), we can write the ODEs for the system as

d

dt
D1 = −aD1Y + bD2X,

d

dt
D2 = −bD2X + aD1Y,

d

dt
X = (I1 + ∆I1)− δ1X,

d

dt
Y = (I2 + ∆I2)− δ2Y.

(2)

According to [6], the protein decay rates are much larger
than the flipping rates. Therefore, the dynamics of X and Y
can be regarded as the fast dynamics of system (2) and we
can employ the quasi-steady state approximation [11], letting
d
dtX = d

dtY = 0. Therefore, without input (I1 = I2 = 0),
X and Y can be approximated as X = ∆I1

δ1
, Y = ∆I2

δ2
,

respectively, and we obtain the reduced system as follows:

d

dt
D1 = −aD1

∆I2
δ2

+ bD2
∆I1
δ1

,

d

dt
D2 = −bD2

∆I1
δ1

+ aD1
∆I2
δ2

.

(3)

From (3), we observe that if the leakiness is zero (∆I1 =
∆I2 = 0), then any value of (D1, D2) is a (marginally)
stable steady state. When instead leakiness is non-zero, but
very small, starting from any initial state, and in particular
from D1 = Dtot or D2 = Dtot, the system will very
slowly approach the unique stable equilibrium (D1, D2) =
( bδ2∆I1
aδ1∆I2+bδ2∆I1

Dtot,
aδ1∆I2

aδ1∆I2+bδ2∆I1
Dtot). This shows that,

under the realistic scenario where we have leakiness, the
system will always have a unique intermediate stable equi-
librium and will not be bistable. Therefore, this system is not
a good candidate for achieving persistent expression of more
than one gene expression states. Nevertheless, since this was
proposed in the literature as a potential design to keep in
memory an initial state given by D1 = 0 or D1 = Dtot,
we will ask the question of how long the system, when
initialized at either one of the two configurations D1 = Dtot

or D2 = Dtot, will keep this state in a stochastic model.
Specifically, system (3) corresponds to the reactions given
by:

D1

a
∆I2
δ2−−−⇀↽−−−

b
∆I1
δ1

D2, (4)

with conservation law D1 + D2 = Dtot, we will use (4)
to determine the hitting time of D1 = bδ2∆I1

aδ1∆I2+bδ2∆I1
Dtot,

which is the unique stable equilibrium, starting from D1 =
Dtot, using a one-dimensional Markov chain model. This is
explained in Section IV-C.

B. Mathematical model of the design in Fig. 1(b)

Based on Fig. 1(b), the reactions describing the system
can be written as

D +X
a1−→ D1 +X, D + Y

a2−→ D2 + Y,

D1
c1−→ D1 +X, D2

c2−→ D2 + Y,

D1 + Y
b1−→ D + Y, D2 +X

b2−→ D +X,

X
δ1−−−−−⇀↽−−−−−

I1+∆I1

∅, Y
δ2−−−−−⇀↽−−−−−

I2+∆I2

∅,

(5)

where, D is an intermediate DNA state that does not express
proteins, D1 is the first state, D2 is the second state, X is the
first invertase that flips D to D1 and D2 to D with flipping rate
constants a1 and b2, respectively, Y is the second invertase
that flips D to D2 and D1 to D with flipping rate constants
a2 and b1, respectively. Parameters c1 and c2 are expression
rate constants of X and Y from D1 and D2, respectively.
Parameters δ1 and δ2 are dilution rate constants of X and Y,
respectively, I1 and I2 are production rate constants of X and
Y due to external induction of the invertases, respectively,
and ∆I1 and ∆I2 are basal expression rate constants of X
and Y, respectively.

From (5), we can write the ODEs of our system as
d

dt
D = −a1DX − a2DY + b1D1Y + b2D2X,

d

dt
D1 = a1DX − b1D1Y,

d

dt
D2 = a2DY − b2D2X,

d

dt
X = c1D1 − δ1X + I1 + ∆I1,

d

dt
Y = c2D2 − δ2Y + I2 + ∆I2.

(6)

According to [6] and [12], protein decay rates are much
larger than the flipping rates, so the dynamics of X and
Y can be approximated at the quasi-steady state. Therefore,
without input (I1 = I2 = 0), X and Y can be approximated
as X = c1D1+∆I1

δ1
and Y = c2D2+∆I2

δ2
, respectively. Also,

according to [9], if a1 and a2 are sufficiently larger than
b1 and b2, D can be regarded as a fast variable and it can
be approximated as D = b1D1Y+b2D2X

a1X+a2Y
. Here, we use this

approximation to perform an analytical investigation of (6).
We then validate the analytical findings against stochastic
simulations of the original system of reactions (5) that does
not have this time scale separation to show that our analytical
finding is still predictive of the trends (Section V).

We thus obtain the reduced model as follows:
d

dt
D1 = − a2b1Y

2

a1X + a2Y
D1 +

a1b2X
2

a1X + a2Y
D2,

d

dt
D2 =

a2b1Y
2

a1X + a2Y
D1 −

a1b2X
2

a1X + a2Y
D2.

(7)

From (7), we observe that if the leakiness is
zero, then (D1, D2) = (Dtot, 0) and (0, Dtot)
are stable steady states while (0, 0) and

(

a2b1c
2
2δ

2
1

a1b2c
2
1δ

2
2

1+
b1c2δ1
a1c1δ2

+
a2b1c

2
2δ

2
1

a1b2c
2
1δ

2
2

Dtot,
1

1+
b1c2δ1
a1c1δ2

+
a2b1c

2
2δ

2
1

a1b2c
2
1δ

2
2

Dtot) are

unstable steady states. When leakiness is non-zero, but ∆I
c

is very small, the system still maintains bistability with two
stable steady states approximately given by D1 ≈ Dtot and



D2 ≈ Dtot. Therefore, we will ask the question of how
long the system, when initialized at either one of the two
stable configurations (D1 = Dtot or D2 = Dtot), will keep
this state in a stochastic model. System (7) corresponds to
the reactions given by:

D1

a2b1Y
2

a1X+a2Y−−−−−−−⇀↽−−−−−−−
a1b2X

2

a1X+a2Y

D2, (8)

where X = c1D1+∆I1
δ1

and Y = c2D2+∆I2
δ2

, with a con-
servation law D1 + D2 = Dtot. We will thus use (8) to
analytically determine the hitting time of D1 = 0 starting
from D1 = Dtot, using a one-dimensional Markov chain
model. This is explained in Section IV-A.

C. Mathematical model of the design in Fig. 1(c)

Based on Fig. 1(c), the reactions describing the system
can be written as

D1 + Y
a−→ D2 + Y, D2 +X

b−→ D1 +X,

D1
c1−→ D1 +X, D2

c2−→ D2 + Y,

X
δ1−−−−−⇀↽−−−−−

I1+∆I1

∅, Y
δ2−−−−−⇀↽−−−−−

I2+∆I2

∅,
(9)

where, D1 is the first state, D2 is the second state, X is the
first invertase that flips D2 to D1 with flipping rate constant
b, Y is the second invertase that flips D1 to D2 with flipping
rate constant a. Here, c1 and c2 are expression rate constants
of X and Y from D1 and D2, respectively. Parameters δ1 and
δ2 are dilution rate constants of X and Y, respectively, I1 and
I2 are production rate constants of X and Y due to external
induction of the invertases, respectively, and ∆I1 and ∆I2
are basal expression rate constants of X and Y, respectively.

From (9), we can write the ODEs of our model as

d

dt
D1 = −aD1Y + bD2X,

d

dt
D2 = aD1Y − bD2X,

d

dt
X = c1D1 − δ1X + I1 + ∆I1,

d

dt
Y = c2D2 − δ2Y + I2 + ∆I2.

(10)

As before, the dynamics of X and Y can be approximated
at the quasi-steady state. Without input (I1 = I2 = 0), X
and Y can thus be approximated as X = c1D1+∆I1

δ1
, Y =

c2D2+∆I2
δ2

, respectively, and we can obtain the reduced ODE
model as follows:

d

dt
D1 = −aD1

c2D2 + ∆I2
δ2

+ bD2
c1D1 + ∆I1

δ1
,

d

dt
D2 = aD1

c2D2 + ∆I2
δ2

− bD2
c1D1 + ∆I1

δ1
.

(11)

From (11), we observe that if the leakiness is zero (∆I1 =
∆I2 = 0), then (D1, D2) = (Dtot, 0) and (0, Dtot) are stable
steady states. When leakiness is non-zero, but ∆I

c is very
small, the system still maintains bistability with two stable
steady states given by D1 ≈ Dtot and D2 ≈ Dtot. We will
therefore ask the question of how long the system, when
initialized at either one of the two configurations D1 = Dtot

or D2 = Dtot, will keep this state in a stochastic model.

Specifically, system (11) corresponds to the reactions given
by:

D1

a
c2D2+∆I2

δ2−−−−−−−−⇀↽−−−−−−−−
b
c1D1+∆I1

δ1

D2, (12)

with conservation law D1 + D2 = Dtot. We will thus use
(12) to determine the hitting time of D1 = 0 starting from
D1 = Dtot, using a one-dimensional Markov chain model.
This is explained in Section IV-B.

IV. MATHEMATICAL ANALYSIS OF THE TIME TO MEMORY
LOSS USING A STOCHASTIC MODEL

While in a deterministic model, a bistable system
initialized at a stable steady state will remain at this state
indefinitely, this is not the case in a stochastic model. In
fact, the noise intrinsic in the reactions will perturb the
system state even when starting at a deterministically stable
equilibrium. If the resulting state perturbation is large, the
system’s state may reach the other stable steady state and
remain in its vicinity for some time. In this case, we will
say that the system has lost the memory of its initial state.
Here, we mathematically quantify the time it takes to loose
the memory, which we call the time to memory loss, by
computing a suitable hitting time in the corresponding
Markov chain model.
According to reactions (4), (8) and (12), the toggle switch

Fig. 2: One-dimensional Markov chain model of the toggle
switch designs. Reactions D1

βx−−⇀↽−−
αx

D2 with conservation law

D1 + D2 = Dtot can be represented as the above Markov
chain. Here, αx and βx of the designs in Fig. 1 are given.

dynamics can be represented by a one-dimensional Markov
chain, in which the state X represents the total number
of D1 and can vary between 0 and Dtot (Fig. 2). For
the design in Fig. 1(b) and Fig. 1(c), we are interested in
determining the average time it takes to the state to reach
the configuration D1 = 0 starting from D1 = Dtot. On the
other hand, for the design in Fig. 1(a), we are interested in
determining the average time it takes to the state to reach
the D1 = bδ2∆I1

aδ1∆I2+bδ2∆I1
Dtot, which is the unique stable

equilibrium, starting from D1 = Dtot. These times are
what we take as a measure of the time to memory loss of
the initial state. We compute the hitting time of D1 = 0
starting from D1 = Dtot for systems Fig. 1(b) and Fig. 1(c),
and for system Fig. 1(a), we compute the hitting time of



D1 = bδ2∆I1
aδ1∆I2+bδ2∆I1

Dtot starting from D1 = Dtot.

A. Hitting time for the designs of Fig. 1(b) and Fig. 1(c)

We define the random variable, ti:

ti = inf {t ≥ 0 : D1(t) = 0;D1(0) = i} with i ∈ [0, Dtot],

and the hitting time τi of D1 = 0, starting from D1 = i, as
τi = E(ti). We want to calculate τDtot , which is the hitting
time of state D1 = 0, starting from state D1 = Dtot. Then,
according to [13], we have

τ0 = 0,

τx =
1

αx + βx
+

βx
αx + βx

τx−1 +
αx

αx + βx
τx+1

(for x = 1, 2, . . . , Dtot − 1),

τDtot =
1

βDtot
+ τDtot−1,

(13)

where αx and βx are given in Fig. 2 for each of the designs.
Define ∆τx = τx+1 − τx and multiply by (αx + βx) both
sides, then we can rewrite (13) as follows:

∆τx−1 =
1

βx
+
αx
βx

∆τx,

where ∆τDtot−1 is τDtot−τDtot−1
= 1

βDtot
. Then, we rewrite

∆τx−1 as follows:

∆τx−1 =
1

βx
+
αx
βx

∆τx =
1

βx
+
αx
βx

(
1

βx+1
+
αx+1

βx+1
∆τx+1)

=
1

βx
+

1

βx+1

αx
βx

. . .+
1

βDtot−1

αxαx+1 . . . αDtot−2

βxβx+1 . . . βDtot−2

+
αxαx+1 . . . αDtot−1

βxβx+1 . . . βDtot−1
∆τDtot−1,

and rewrite ∆τx as follows:

∆τx =

Dtot−1∑
j=x

1

βj

γj
γx

+
∆τDtot−1

γx
=

Dtot−1∑
j=x

1

βj

γj
γx

+
1

βDtotγx
,

where γx =
βxαx+1...βDtot−1

αxαx+1...αDtot−1
. We thus obtain

τDtot = τDtot−1 +
1

βDtot

= (τDtot−1 − τDtot−2) + . . .+ (τ1 − τ0) +
1

βDtot

=

Dtot−2∑
x=0

(

Dtot−1∑
j=x

1

βj

γj
γx

+
1

βDtotγx
) +

1

βDtot

=
1

βDtot
(1 +

1

γ1
+ . . .+

1

γDtot−1
) + . . .

+
1

βx
(1 +

γx
γx−1

+ . . .+
γx
γ1

) + . . .+
1

β0
.

(14)

We next evaluate the expression of τDtot given in (14) by
substituting the expression of γx using the expressions of αx
and βx given in Fig. 2 for each of the designs.

Claim 4.1: Under the symmetry assumption, where a1 =
a2 = a, b1 = b2 = b, a = b, c1 = c2 = c, δ1 = δ2 = δ,
I1 = I2 = I and ∆I1 = ∆I2 = ∆I , the hitting time τDtot
satisfies τDtot >

(Dtot)
2

a
δc

(∆I)2 for system Fig. 1(b)

Proof: From (14), τDtot is larger than 1
βDtot

(1 + 1
γ1

+

. . .+ 1
γDtot−1

). With the symmetry assumption,

αx = βDtot−x =
a( cx+∆I

δ )2

cDtot+2∆I
δ

and α1 < α2 < α3 . . . < αDtot .

Therefore,

1

γx
=
αxαx+1 . . . αDtot−1

βxβx+1 . . . βDtot−1
=

αxαx+1 . . . αDtot−1

αDtot−xαDtot−x−1 . . . α1
≥ 1.

This implies,

τDtot ≥
1

βDtot
(1 +

1

γ1
+ . . .+

1

γDtot−1
) ≥ Dtot

βDtot
. (15)

Also, by the definition of βx given in Fig. 2, we have

1

βDtot
=

acDtot
δ

+ 2a∆I
δ

a2( ∆I
δ

)2
≥

acDtot
δ

a2( ∆I
δ

)2
. (16)

By combining (15) and (16),

τDtot ≥
(Dtot)

2

a

δc

(∆I)2
.

We note that in this design we can increase the hitting time by
increasing the value of the expression rate constant ci of the
invertases. This can be easily accomplished experimentally
by increasing the strength of the ribosome binding site (RBS)
or of the corresponding promoters. Therefore, we can tune
the hitting time and thus, in principle, we can increase the
time to memory loss of both extremal states.

Claim 4.2: Under the symmetry assumption, where a = b,
c1 = c2 = c, δ1 = δ2 = δ, I1 = I2 = I and ∆I1 = ∆I2 =
∆I , the hitting time τDtot satisfies τDtot >

δ
a∆I 2Dtot−2 for

system Fig. 1(c)
Proof: From (14), τDtot is larger than 1

βDtot
(1 + 1

γ1
+

. . .+ 1
γDtot−1

). With the symmetry assumption,

τDtot >
1

βDtot
(1 +

1

γ0
+ . . .+

1

γDtot−2
)

=
δ

a∆I
(1 +

c(Dtot − 1) + ∆I

c+ ∆I
+ . . .

+ a
(c(Dtot − 1 + ∆I))(c(Dtot − 2) + ∆I) . . . (2c+ ∆I)

(c+ ∆I)(2c+ ∆I) . . . ((Dtot − 1)c+ ∆I)
)

>
δ

2a∆I
(1 + (Dtot − 1) + . . .+

(Dtot − 1)(Dtot − 2) . . . 2

2 × 3 × . . . (Dtot − 1)
)

=
δ

a∆I
2Dtot−2.

This result shows that the easily tunable parameter ci cannot
be used to extend the time to memory loss in this design
and that this time is only dependent on the leakiness, on the
decay rate of the proteins, mostly due to cell dilution, and
to the recombinase switching rate constant, which are not as
easily tunable.



B. Hitting time for the design of Fig. 1(a)

When we assume symmetry, where a = b, δ1 = δ2 =
δ, ∆I1 = ∆I2 = ∆I , bδ2∆I1

aδ1∆I2+bδ2∆I1
Dtot becomes 1

2Dtot.
For simplicity, we consider the hitting time of D1 = 1

2Dtot

starting from D1 = Dtot. We define the random variable, ti:

ti = inf {t ≥ 0 : D1(t) =
1

2
Dtot;D1(0) = i}

with i ∈ [
1

2
Dtot, Dtot],

and the hitting time τi of D1 = 1
2Dtot, starting from D1 = i,

as τi = E(ti). We want to calculate τDtot , which is the hitting
time of state D1 = 1

2Dtot, starting from state D1 = Dtot.
Then, according to [13], we have

τ 1
2
Dtot

= 0,

τx =
1

αx + βx
+

βx
αx + βx

τx−1 +
αx

αx + βx
τx+1

(for x =
1

2
Dtot + 1, . . . , Dtot − 1),

τDtot =
1

βDtot
+ τDtot−1,

(17)

where αx and βx are given in Fig. 2 (Fig. 1(a) column). By
applying the same procedure from the previous subsection,
we obtain

τDtot = τDtot−1 +
1

βDtot

= (τDtot−1 − τDtot−2) + . . .+ (τ1 − τ0) +
1

βDtot

=

Dtot−2∑
x= 1

2
Dtot

(

Dtot−1∑
j=x

1

βj

γj
γx

+
1

βDtotγx
) +

1

βDtot
.

(18)

We next evaluate the expression of τDtot given in (18) by
substituting the specific expression of γx in Fig. 2 (Fig. 1(a)
column).

Claim 4.3: The hitting time τDtot satisfies τDtot =
δ

a∆I ( 1
4D

2
tot + 1

2Dtot − 1) for system Fig. 1(a)
Proof: To calculate τDtot for Fig. 1(a), we can obtain

αi and βi from (4) as follows:

α0 = . . . = αDtot−1 = β1 = . . . = βDtot = a
∆I

δ
= α,

which implies γi = 1. Then the hitting time τDtot can be
written as

τDtot =

Dtot−2∑
x= 1

2Dtot

(

j=x∑
Dtot−1

2

α
) +

1

α
=

δ

a∆I
(
1

4
D2
tot +

1

2
Dtot − 1).

This claim shows that the hitting time τDtot of the design
in Fig. 1(a) is, just like for the design of Fig. 1(c), depends
only on the leakiness, the protein’s decay rate constant, and
the recombinase switching rate constant, parameters that are
not as easily tunable as a protein’s expression rate c.

We therefore conclude that the design of Fig. 1(b) allows
to extend the time to memory loss of either stable state
by increasing the recombinases expression rate constants ci,
such as through increasing the RBS strength. By contrast,

this is not possible in the other two designs, in which the
effect of leakiness dictates the time to memory loss. This
also implies that the presence of the intermediate state D in
the design of Fig. 1(b) is critical to obtain a design where
the degrading effect of leakiness on the time to memory loss
can be quenched.

V. SIMULATION RESULT

Given that a number of approximations were made in
order to achieve a system representation that could allow
us to analytically write the hitting time as a function of the
parameters, we perform simulations in this section to demon-
strate that the trends discovered analytically hold in general
for the original systems. Specifically, we use the Stochastic
Simulation Algorithm (SSA) [11] to simulate the full systems
of reactions given in (1), (5), (9), and, especially for system
(5), without assuming time-scale separation between D and
D1, D2.

Fig. 3 shows sample paths of D1 for the three toggle
switch designs for different ∆I and c values. D1 starts from
Dtot and longer memory implies that D1 does not hit 0
(for designs in Fig. 1(b) and Fig.1(c)) or 1

2Dtot (for the
design in Fig.1(a)) for longer time. As predicted from theory,
the time to memory loss increases for all designs when the
leakiness decreases (Fig. 3(a),(b),(d)). However, we cannot
easily reduce the leakiness ∆I . By constrast, we can easily
tune the expression rate constant c. As predicted from theory,
the design of Fig. 1(b) shows increased time of memory loss
when c is increased (Fig. 3(c)), while the design of Fig. 1(c)
does not (Fig. 3(e)).

Fig. 4 further shows the numerically obtained stationary
distribution of (D1, D2) for the three different toggle switch
designs. Fig. 4(a)-(b) shows that the design of Fig. 1(a) has
a unimodal stationary distribution, which is consistent with
the fact that the circuit is monostable and not bistable, so
it is not a good candidate to engineer memory. Fig. 4(c)-
(e) and Fig.4(f)-(h) show that both designs in Fig. 1(b)
and Fig. 1(c), which we have proposed, result in a bimodal
distribution, consistent with bistability. However, only for the
design in Fig. 1(b), but not for the design in Fig. 1(c), as
c is increased the distribution becomes concentrated around
the two deterministic stable steady states (Fig 4(e) versus
Fig 4(h)). This is consistent with an increased time to
memory loss since the probability of finding the system
in any intermediate state becomes practically zero as c is
increased.

VI. CONCLUSION

In this paper, we proposed a design for a long-term mem-
ory genetic toggle switch inspired by chromatin modification
circuits. Our design overcomes the major drawback of con-
ventional toggle switch designes based on DNA invertases,
which are vulnerable to basal level of expression of the DNA
invertases. We mathematically proved that the hitting time
of state D1 = 0 from state D1 = Dtot of our design can
be increased, despite leakines, by increasing the invertases
production rates. We also provided simulation results that



Fig. 3: Time trajectories of D1 for the three different
toggles switch designs. (a) Time trajectories of Fig. 1(a)
with different ∆I (0.02, 0.004, 0.0008 mM min−1). (b)-(c)
Time trajectories of Fig. 1(b). For (b), c is fixed as 0.01
min−1 and ∆I is changed (0.02, 0.004, 0.0008 mM min−1).
For (c), ∆I is fixed as 0.02 min−1 and c is changed (0.01,
0.05, 0.25 min−1). (d)-(e) Time trajectories of Fig. 1(c). For
(d), c is fixed as 0.01 min−1 and ∆I is changed (0.02, 0.004,
0.0008 mM min−1). For (e), ∆I is fixed as 0.02 min−1 and
c is changed (0.01, 0.05, 0.25 min−1). In all simulations,
a1 = a2 = a = b1 = b2 = 5.78 × 10−3 mM−1min−1, δ1 =
δ2 = 0.069 min−1, I1 = I2 = 0 mM min−1, ∆I1 = ∆I2 =
0.02, 0.004, 0.0008 mM min−1, Dtot = 20, c1 = c2 = c =
0.01, 0.05, 0.25 min−1, (D1(0), D2(0)) = (Dtot, 0), time =
0 to 50000 minutes are used [12] [6]. For (b) and (c), since
a1 = a2 = b1 = b2, the simulation is conducted outside the
region of approximation of D to the quasi-steady state.

validate the theoretical predictions on the full reaction sys-
tems. More broadly, DNA invertases allow implementation
of long-term memory bacterial toggle switches based on
the core chromatin modification circuit motifs that shape
epigenetic memory in eukaryotic cells.
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Fig. 4: Stationary distribution of (D1, D2) for the three
different toggle switch designs. (a)-(b) Stationary distri-
bution of the system in Fig. 1(a) for different ∆I ((a):
∆I = 0.02 mM min−1, (b): ∆I = 0.004 mM min−1).
(c)-(e) Stationary distribution of the system in Fig. 1(b)
for different c and ∆I ((c): c = 0.01 min−1, ∆I =
0.02 mM min−1, (d): c = 0.01 min−1, ∆I = 0.004 min−1,
(e): c = 0.05 min−1, ∆I = 0.02 mM min−1) (f)-(h) Station-
ary distribution of the system in Fig.1(c) for different c and
∆I ((f): c = 0.01 min−1, ∆I = 0.02 mM min−1, (g): c =
0.01 min−1, ∆I = 0.004 mM min−1, (h): c = 0.05 min−1,
∆I = 0.02 mM min−1). All parameters are the same as
those in Fig. 3. Stationary distributions were obtained by
simulating the system for 1000 different initial conditions
and for tf = 200000 min.
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