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Abstract— The safety control problem for hybrid au-
tomata with imperfect mode information and continuous
control is addressed. When the controller does not have
access to the mode of the system, available static feedback
techniques cannot be applied. We propose a dynamic feed-
back strategy in which a mode estimator constructs the set
of possible current system modes. A control map is designed
that on the basis of the current mode estimates returns the
set of all possible safe control inputs. This dynamic feedback
map implicitly assumes separation between state estimation
and control. Termination conditions are provided. The pro-
posed control technique is applied to a semi-autonomous
cooperative active safety system.

I. I

In this paper, we address the safety control problem for

hybrid automata in which the mode is not known and only

continuous control inputs are available. This problem nat-

urally arises in a variety of applications, including intent-

based conflict detection and avoidance for aircrafts [15],

robotic games with imperfect information [7], and semi-

autonomous cooperative active safety systems to prevent

vehicle collisions [17]. In these systems, the presence

of human-driven vehicles that do not communicate or

cooperate introduces a large degree of uncertainty. An

approach in which this uncertainty is treated as an adver-

sary in a game theoretic fashion would lead to solutions

that are too conservative to be realistically considered for

collision warning or active control [14, 16]. A promising

approach is instead to construct simple decision models

for the non-communicating agents in the form of a hybrid

automaton. This hybrid automaton has unknown modes

as the decisions of the non-communicating agents are

unknown and thus it leads to a control problem with

imperfect mode information.

While there is a wealth of literature studying safety

control for hybrid automata assuming perfect state infor-

mation [1, 12, 14, 16], the same problem when the state

is not fully measured has been rarely addressed. Some

works on this problem have recently appeared [6, 19]. In

particular, [19] proposes a solution to the control problem

for rectangular hybrid automata that admit a finite-state

abstraction. Dynamic control of block triangular order

preserving hybrid automata under imperfect continuous

state information is considered in [6] for discrete time
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systems and extended in [8] for continuous time systems.

However, mode uncertainty is not considered.

In this paper, we consider hybrid automata subject

to continuous and discrete disturbance inputs and with

only continuous control inputs. The mode of the system

is unknown while the continuous state is measured. The

problem considered is to design a dynamic feedback map

that on the basis of the available sensory information

guarantees that the system state is kept outside a bad set of

states. Our approach relies on transforming this problem

of imperfect information to an equivalent problem with

perfect information. This equivalent problem is obtained

under suitable observability assumptions on the mode of

the system. Within this problem a new system that updates

the set of all possible current system states, i.e., the

estimator, is constructed and controlled for safety. The

mode estimator updates the set of all possible current

system modes. A feedback map is then designed that

for each set of possible current modes returns the set

of possible continuous control inputs that maintain the

system state outside a bad set. An iterative procedure

for computing this map is provided and it is shown to

terminate under conditions that can be directly checked on

the mode estimator. By construction, the obtained dynamic

feedback map is the least restrictive for the chosen discrete

state estimator.

This paper is organized as follows. The model and

problem are introduced in Section II, the solution is

proposed in Section III. In Section IV, we present an

application example.

II. SM  P D

We consider hybrid automaton H =

(Q, X,U,∆,Σ,R, f ), in which Q is a finite set of

modes, X is a vector space, U is a continuous set of

control inputs, ∆ is a continuous set of disturbances, Σ is

a finite set of disturbance events, R : Q × Σ → Q is the

discrete state update map, f : X × Q ×U × ∆→ X is the

vector field, which is allowed to be discontinuous in the

first argument to model autonomous discrete transitions.

We represent such a system by the equations

q(t+) = R(q(t), σ(t)), σ(t) ∈ Σ

ẋ(t) = f (x(t), q(t), u(t), d(t)), d(t) ∈ ∆, (1)

in which q(t+) denotes the value of the mode immediately
after a transition taking place at time t. We assume there is
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no continuous state reset, i.e. x(t+) = x(t). In this system, x

is measured and available for control, while q is not. Given

initial conditions (x0, q0) ∈ X×Q and piecewise continuous

input signals ũt : [0, t)→ U, d̃t : [0, t)→ ∆, σ̃t : [0, t)→

Σ, the corresponding trajectory (or flow) of H is denoted

φ(t, (x0, q0), ũt, d̃t, σ̃t) with φx(t, (x0, q0), ũt, d̃t, σ̃t) being its

continuous part and φq(t, q0, σ̃t) being its discrete part.

When the initial conditions and inputs are clear from the

context, we will denote such trajectories by x(t) and q(t).

Let 2Q denote the set of all subsets of Q. The in-

formation that we have about the system state at time t

comprises information on the initial state η0 := (x0, q̂0)

with q̂0 ∈ 2Q, the continuous control input signal ũt,

and the continuous state signal x̃t : [0, t] → X. We call

this information the information state of the system, and

denote it by ηt = (η0, ũt, x̃t). We denote the set of all

observation histories up to time t as X̃t and the set of all

control input histories up to time t as Ũt. We denote the

information space up to time t as It = X×2Q×Ũt× X̃t and

the information space as I :=
⋃

t≥0 It [13]. A dynamic

feedback map is a map with memory π : I → U that

on the basis of the current information state establishes

control inputs. Given H and the map π, the closed loop

hybrid automaton is denoted Hπ := (H, π) and is repre-

sented by (1), in which u(t) = π(ηt). Its state trajectories

are denoted with a π superscript. Let B ⊆ X be an unsafe

set of states, we seek to solve the following problem.

Problem 1: Compute the set C of all initial infor-

mation states η0 for which no dynamic feedback map

π : I → U exists that guarantees φπx(t, (x0, q0), d̃t, σ̃t) < B,

for all t ≥ 0, d̃t, σ̃t , and (x0, q0) ∈ η0.

The set C is referred to as the capture set for system

H. Once set C has been determined, the set of all dynamic

feedback maps that keep the information state outside

it is computed. In order to simplify the information

state representation, which consists of system histories,

we consider the non-deterministic information state. This

represents the set of all possible current system states

compatible with the history of the system and it is denoted

(x̂t(ηt), q̂t(ηt)), in which x̂t(ηt) = x(t). Thus, we have that

C = {η0 ∈ X × 2Q | ∀ π ∃ t, x̃t, s. t. x̂πt (ηt) ∈ B}. This set

can also be expressed as C =
⋃

q̂∈2Q

(

Cq̂, q̂
)

, in which Cq̂ =

{x ∈ X | ∀ π ∃ t, x̃t, s. t. x̂πt (ηt) ∈ B with η0 = (x, q̂)}. The

set Cq̂ represents the set of all continuous initial states x

that are mapped to B for some nature action independently

of the controller when the flow starts in a mode contained

in q̂. Problem 1 is thus solved by computing all such sets

Cq̂ for all q̂ ∈ 2Q.

Note that the controller uses all the information it gath-

ers from the information state in order to make choices

against nature. For example, if q̂ = {q1, q2} and the infor-

mation state cannot distinguish between the two modes,

it means that the disturbance action may be playing in a

range so to generate an x̃t trajectory that is compatible

both under q1 and under q2. This fact implicitly restricts

the set of disturbance actions that the controller should

counter act. Also, note that if at time zero the disturbance

action d(0) is such that the two modes are distinguishable,

the information state can immediately switch from the

initial value q̂t(η0) = {q1, q2} to q̂t(η0+ ) = {q1}. It is

thus useful to introduce the following mode observability

notion for system H.

Definition 1: System H is said immediate mode ob-

servable provided for all qi ∈ q̂0, there is a nature action

d(0) such that (i) q̂(η0+ ) = qi; (ii) for all t > 0, we have that

q̂(ηt) = qi implies x̃t is any signal that can be generated

by H when q(t) = qi.

Item (ii) specifies that once the non-deterministic infor-

mation state has converged to qi, any continuous state

trajectory compatible with qi can be generated. This last

requirement implies that while q̂(ηt) = qi, the disturbance

choices can span in their entire range ∆.

III. P S

In order to solve Problem 1, we introduce update

laws for the non-deterministic information state. By in-

troducing these update laws we translate an imperfect

state information problem to a perfect state information

one, in which the non-deterministic information state

is the new (measured) state. Such update laws should

be such that at any time t the set of possible current

modes contains only modes that are compatible with the

entire history of the system up to time t. In general,

this requirement cannot be satisfied when a separation

structure is assumed between state estimation and control.

However, a separation structure enables computationally

tractable solutions and the use of mode estimators that are

available in the literature [4, 9]. In what follows, we thus

propose a separation structure between mode estimation

and control.

Let the current estimate of the discrete non-

deterministic information state be denoted (with abuse

of notation) by q̂(t) ∈ 2Q. Let T > 0 and F (x̃[t−T,t]) be

a filtering function that returns a set of possible current

modes compatible with the measured continuous signal

between times t − T and t (see [4, 9], for example). Let

all such possible sets of modes be denoted by Y1, ..., Ym.

Define the new function R̂(q̂, Y) :=
⋃

t≥0

⋃

σ̃t
φq(t, q̂, σ̃t) ∩

Y, in which
⋃

t≥0

⋃

σ̃t
φq(t, q̂, σ̃t) is the reachable set of

modes from q̂ under all possible disturbance sequences,

Y ∈ Y := {ǫ, Y1, ..., Ym}, and ǫ is defined such that

R̂(q̂, ǫ) := q̂. We consider a mode estimator of the form

q̂(t+) = R̂(q̂(t), Y(t)), Y(t) ∈ Y, in which Y(t) = F (x̃[t−T,t]).

Switches are triggered by a change in the value of Y(t),

which are determined by nature (the measured signal x̃t).

This estimator is by construction correct, meaning that

q(t) ∈ q̂(t) for all t. The estimate of the non-deterministic

discrete information state q̂(t) restricts the set of possible

dynamics of the continuous state x̂(t) ∈ X to ˙̂x(t) =

f (x̂(t), α(t), u(t), d(t)) where now α(t) is restricted to lie
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in q̂(t) at all time t. As a consequence, we have

q̂(t+) = R̂(q̂(t), Y(t)), Y(t) ∈ Y

˙̂x(t) = f (x̂(t), α(t), u(t), d(t)), d(t) ∈ ∆, α(t) ∈ q̂(t), (2)

with initial conditions (x̂(0), q̂(0)) = η0. The state of

such a system lies in X × Q̂ with Q̂ ⊆ 2Q, and

it is exactly known because q̂(t) is known by con-

struction and x̂(t) = x(t). We will refer to this hy-

brid automaton as Ĥ = (Q̂, X,U,∆,Y, R̂, f̂ ), in which

f̂ (x̂, q̂, u, d) := { f (x, α, u, d), α ∈ q̂}. We denote a tra-

jectory of Ĥ by φ̂(t, η0, ũt, d̃t, Ỹt). Its discrete part will

be denoted by φq̂(t, q̂0, Ỹt) and its continuous part by

φx̂(t, (x0, q̂0), ũt, d̃t, Ỹt). We will also denote such trajec-

tories by x̂(t) and q̂(t) when the inputs are clear from the

context. By construction, any trajectory of H starting at

a state in η0 is possible for the same control input in Ĥ.

Therefore, the set of trajectories of Ĥ contains the one

of H. The other way around is not true unless (x̂(t), q̂(t))

is exactly equal to the nondeterministic information state,

meaning that ηt cannot restrict further such sets. Never-

theless, we next show that system Ĥ can be employed

for solving Problem 1. When u = π(x, q̂), we denote

the hybrid automaton by Ĥπ and its trajectories with a

superscript π.

Problem 2: Given hybrid automaton Ĥ, determine its

capture set, Ĉ = {η0 ∈ X × Q̂ | ∀ π ∃ t, d̃t, Ỹt, s. t. some

φπ
x̂
(t, η0, d̃t, Ỹt) ∈ B}.

Proposition 1: The set Ŵ := (X×Q̂)/Ĉ is the maximal

controlled invariant set of Ĥ contained in (X × Q̂)/B× Q̂.

Proof: (Sketch.) The proof of this proposition draws

from the fact that Ŵ is closed under union [14].

Since Ĉ =
⋃

q̂∈Q̂(Ĉq̂, q̂) in which Ĉq̂ = {x0 ∈

X | ∀ π ∃ t, d̃t, Ỹt s. t. some φπ
x̂
(t, (x0, q̂), d̃t, Ỹt) ∈ B},

we focus on the computation of the sets Ĉq̂ for all q̂ ∈ Q̂.

Definition 2: We say that Problem 2 is equivalent to

Problem 1 provided Ĉq̂ = Cq̂ for all q̂ ∈ Q̂.

Define the uncontrollable predecessor of a set

S ⊆ X, given q̂ ∈ Q̂, as Pre(q̂, S ) := {x ∈

X | ∀π, ∃ t, d̃t, s. t. some φπ
x̂
(t, (x0, q̂), d̃t, ǫ) ∈ S }. The

following properties of the Pre operator follow from the

fact that it is an order preserving map [5] in both of its

arguments, where order is according to set inclusion.

Proposition 2: The operator Pre : Q̂ × 2X → 2X

has these properties for all q̂ ∈ Q̂ and S ∈ 2X , (i)

S ⊆ Pre(q̂, S );(ii) Pre(q̂, Pre(q̂, S )) = Pre(q̂, S ); (iii)

Pre(q̂, S 1) ⊆ Pre(q̂, S 2), for all S 1 ⊆ S 2; (iv) Pre(q̂1, S ) ⊆

Pre(q̂2, S ), for all q̂1 ⊆ q̂2; (v) Pre(q̂1, Pre(q̂2, S )) =

Pre(q̂1, S ), for all q̂2 ⊆ q̂1; and (vi) Pre(q̂0, S 0 ∪

Pre(q̂1, S 1)∪ . . .∪Pre(q̂n, S n)) = Pre(q̂0, S 0∪S 1∪ . . .∪S n)

for q̂i ⊆ q̂0 for all i.

Proposition 3: Assume that (i) system H is immediate

mode observable; (ii) for all q̂ = {q1, ..., qn} ∈ Q̂, we

have that Pre(q̂, B) = Pre(q1, B) ∪ ... ∪ Pre(qn, B); (iii) any

trajectory of Ĥ is such that q̂(t′) ⊆ q̂(t) for all t′ ≥ t. Then,

Problem 1 and Problem 2 are equivalent.

Proof: It suffices to show that for all q̂ ∈ Q̂, we

have Ĉq̂ ⊆ Cq̂. The fact that Cq̂ ⊆ Ĉq̂ derives from the

fact that the set of x̂ trajectories of Ĥ contains the set of

x trajectories of H. By virtue of assumption (iii) and the

definition of the Pre operator, we have that Ĉq̂ = Pre(q̂, B),

which by assumption (ii) leads to Ĉq̂ = Pre(q1, B) ∪ ... ∪

Pre(qn, B). Take x ∈ Ĉq̂. Then, there is qi ∈ q̂ such that

x ∈ Pre(qi, B). By assumption (i), the set Pre(qi, B) is

contained in Cq̂ for all qi ∈ q̂. This in turn implies that

x ∈ Cq̂.

If Problem 1 and Problem 2 are not equivalent, the sets

Ĉq̂ will be overapproximating the sets Cq̂.

A. Computation of the Capture Set

Proposition 4: The sets Ĉq̂i
for all q̂i ∈ Q̂ satisfy

Ĉq̂i
= Pre





















q̂i,
⋃

{q̂ j∈R̂(q̂i ,Y),Y∈Y}

Ĉq̂ j
∪ B





















.

Proof: Define D := B ∪{q̂ j∈R̂(q̂i ,Y)} Ĉq̂ j
and A :=

Pre(q̂i,D), in which {q̂ j ∈ R̂(q̂i,Y)} := {q̂ j ∈ R̂(q̂i, Y), Y ∈

Y}. Take x0 ∈ A. This implies, by the definition of Pre

that for all π, there exists t and signal d̃t such that some

φπ
x̂
(t, (x0, q̂i), d̃t, ǫ) ∈

⋃

{q̂ j∈R̂(q̂i ,Y)} Ĉq̂ j
. This implies that for

all π, there exists time t1, a signal d̃t1 , and q̂ j ∈ R̂(q̂i,Y)

such that x̂(t1) = φπ
x̂
(t1, (x0, q̂i), d̃t1 , ǫ) ∈ Ĉq̂ j

. Let nature

choose Ỹt1 such that q̂(t1) = φπ
q̂
(t1, q̂i, Ỹt1 ) = q̂ j. Then,

(x̂(t1), q̂(t1)) ∈ Ĉ. Therefore for all π, there exists t, and

signals d̃t, Ỹt, such that some φπ
x̂
(t, (x0, q̂i), d̃t, Ỹt) ∈ B. This

in turn implies, by the definition of Ĉq̂, that x0 ∈ Ĉq̂i
.

Now consider x0 ∈ Ĉq̂i
. By definition of Ĉ, we also

have that (x0, q̂i) ∈ Ĉ. If (x0, q̂i) ∈ Ĉ, then for all π

there exists d̃t, Ỹt such that some φ̂(t, (x0, q̂i), d̃t, Ỹt) ∈ Ĉ,

for all t. If Ỹt makes q̂i switch to some q̂ j ∈ R̂(q̂i,Y)

at time t1, it must be that φπ
x̂
(t1, (x0, q̂i), d̃t, ǫ) ∈ Ĉq̂ j

. If

instead Ỹt does not make q̂i switch, then it must be that

φπ
x̂
(t2, (x0, q̂i), d̃t, ǫ) ∈ B for some t2. Combining the last

two statements, we obtain that for all π, there exists

t, d̃t, and Ỹt such that either φπ
x̂
(t, (x0, q̂i), d̃t, ǫ) ∈ Ĉq̂ j

or

φπ
x̂
(t, (x0, q̂i), d̃t, ǫ) ∈ B, which implies x0 ∈ A.

Let Q̂ = {q̂1, ..., q̂M}, S i ∈ 2X for i ∈ {1, . . . ,M}, and

define S = (S 1, . . . , S M). We define G : (2X)M → (2X)M

as

G(S ) :=





























Pre
(

q̂1,
⋃

{ j|q̂ j∈R̂(q̂1,Y)} S j ∪ B
)

...

Pre
(

q̂M,
⋃

{ j|q̂ j∈R̂(q̂M ,Y)} S j ∪ B
)





























.

Proposition 5: Let S := (S 1, ..., S M) be a tuple of sets

S i ⊆ X such that S = G(S ). Then, (X × Q̂)/
⋃

q̂i∈Q̂
(S i, q̂i)

is a controlled invariant set for Ĥ.

Proof: Let (x0, q̂) <
⋃

q̂i∈Q̂
(S i, q̂i) for q̂ = q̂i ∈ Q̂.

Then x0 < S i, where S i = Pre
(

q̂i,
⋃

{ j|q̂ j∈R̂(q̂i ,Y)} S j ∪ B
)

.

By the definition of Pre, this implies that while q̂(t) =

qi (i.e., Ỹt = ǫ) there is a feedback map π(·, q̂i) such

that φπ
x̂
(t, (x0, q̂i), d̃t, Ỹt) < S i. Let t∗ be such that q̂(t∗)

ThA02.1

3177



switches to q̂ j ∈ R̂(q̂i,Y). At time t∗, we also have that

any x̂(t∗) := φπ
x̂
(t∗, (x0, q̂i), d̃t, Ỹt) is not in S i and thus

x̂(t∗) < S j which implies (x̂(t∗), q̂(t∗)) <
⋃

q̂i∈Q̂
(S i, q̂i).

Proceeding iteratively on the mode switch, we obtain that

the flows of Ĥ starting from any (x0, q̂) <
⋃

q̂i∈Q̂
(S i, q̂i)

stay outside
⋃

q̂i∈Q̂
(S i, q̂i) for a proper control map. Thus,

the set (X × Q̂)/
⋃

q̂i∈Q̂
(S i, q̂i) is a controlled invariant set.

Define the partial order (Z,⊆), where ⊆ is defined

component-wise. This is a complete partial order [5]. One

can verify that G is an order preserving map on (Z,⊆).

Algorithm 1: S 0 := (S 0
1
, S 0

2
, . . . , S 0

M
) := (∅, . . . , ∅),

S 1 = G(S 0)

while S k−1
, S k

S k+1 = G(S k)

end.

If Algorithm 1 terminates, that is, if there is a K∗

such that S K∗ = S K∗+1, we denote the fixed point by S ∗.

The next theorem states that this fixed point is equal to

(Ĉq̂1
, . . . , Ĉq̂M

).

Theorem 1: If Algorithm 1 terminates, the fixed point

S ∗ is such that S ∗ = (Ĉq̂1
, ..., Ĉq̂M

).

Proof: We first show that if Algorithm 1 terminates,

then S ∗ is the least fixed point of G (lfp(G)), which exists

by Knaster-Tarski fixed point theorem because G is an

order preserving map on a complete partial order [5].

Then we show that (Ĉq̂1
, ..., Ĉq̂M

) = lfp(G). If Algorithm

1 terminates, then there is N∗ > 0 such that G(⊥)N∗ =

G(⊥)N∗+1 = S ∗, in which ⊥ = ∅. Thus, S ∗ is a fixed point

of G. To show that it is the least fixed point, consider any

other fixed point of G, called β. Since ⊥ ≤ β, we have

that G(⊥) ≤ G(β) = β, G2(⊥) ≤ G(β) = β,...., GN∗ (⊥) ≤ β.

Since GN∗ (⊥) = S ∗, we have that S ∗ ≤ β.

Proposition 4 indicates that the set Ĉ =
⋃

q̂i∈Q̂
(Ĉq̂i
, q̂i) is

such that the tuple of sets Ĉq̂1
, ..., Ĉq̂M

is a fixed point of G.

Assume that such a tuple of sets is not the least fixed point

of G. This implies that there are sets S i ⊆ Ĉq̂i
such that

the tuple S 1, ..., S M is also a fixed point of G. Consider

the sets Ŵ = (X × Q̂)/
⋃

q̂i∈Q̂
(Ĉq̂i
, q̂i) and the new set Ŵ′

defined as Ŵ′ := (X× Q̂)/
⋃

q̂i∈Q̂
(S i, q̂i). By Proposition 5,

these two sets are both controlled invariant and are both

contained in X × Q̂/(B× Q̂). Since Ŵ ⊆ Ŵ′, we have that

Ŵ is not the maximal controlled invariant set contained

in the complement of B× Q̂. This contradicts Proposition

1, which states that Ŵ is the maximal controlled invariant

set contained in the complement of B× Q̂. Therefore, the

tuple Ĉq̂1
, ..., Ĉq̂M

must be the least fixed point of G.

B. Termination of Algorithm 1

Consider the transition system defined by the discrete

state update law of Ĥ from equations (2), that is, q̂(t+) =

R̂(q̂(t), Y(t)), Y(t) ∈ Y, in which q̂ ∈ Q̂ = {q̂1, . . . , q̂M}.

Definition 3: (Reachable set) The reachable set from

a state q̂i is defined as Reach(q̂i) := {q̂ j ∈

Q̂ | ∃ t, ∃ Ỹt s.t. q̂ j = φq̂(t, q̂i, Ỹt)}.

Definition 4: (Kernel set) The kernel set correspond-

ing to a mode q̂i is defined as ker(q̂i) = {q̂ ∈ Q̂ | q̂ ∈

Reach(q̂i) and q̂i ∈ Reach(q̂)}.

The set ker(q̂i) is the set of all modes that can be

reached from q̂i and from which q̂i can be reached.

Definition 5: (Type of a kernel) A kernel is type(1) if

it does not transit to any other kernel. A kernel is type(n)

if it transits to type(n − 1) kernels and only to type(n −

1), . . . , type(1) kernels.

Let Q̂ker := {ker(q̂1), . . . , ker(q̂M)}. Let there be p

distinct elements in Q̂ker, denoted ∆K1, . . . ,∆Kp. Note that

∆Ki ∩ ∆K j = ∅, for i , j. Let there be Ka elements in

kernel ∆Ka.

Theorem 2: Algorithm 1 terminates if all the kernels

∆K1, . . . ,∆Kp have a maximal element with respect to the

partial order (2Q,⊆).

Proof: We first show that Algorithm 1 termi-

nates for all type(1) kernels. We use the induction ar-

gument to prove that if Algorithm 1 terminates for

type(1), . . . , type(n) kernel, then it terminates for type(n+

1) kernels.

(Base case.) Consider a mode q̂l ∈ ∆Ka, in which ∆Ka

is type(1) and let q̂0 ∈ ∆Ka be the maximal element of

∆Ka. We show that Algorithm 1 terminates by showing

that S n
l
= Pre(q̂0, B), for any n > Ka. From Algorithm 1,

we have that for k > 0

S k
l = Pre





















q̂l,
⋃

{q̂l1
∈R̂(q̂l ,Y)}

Pre





















q̂l1 ,
⋃

{q̂l2
∈R̂(q̂l1

,Y)}

Pre























q̂l2,, . . .
⋃

{q̂lk
∈R̂(q̂lk−1

,Y)}

Pre
(

q̂lk , B
)



































































. (3)

Let k < n be such that q̂0 ∈ R̂(q̂lk−1
,Y). Then S k

l
⊇

Pre(q̂0, B) from a repeated application of Proposition 2 (i).

Since S n
l
⊇ S k

l
for k < n, we have S n

l
⊇ Pre(q̂0, B).We ob-

tain S n
l
⊆ Pre(q̂0, B) by repeatedly applying Propositions

2 (iv), with q̂2 = q̂0, and Proposition 2 (ii) to equation (3)

with k = n.

(Induction step.) We assume that Algorithm 1 termi-

nates for all type(1) to type(n) kernels. Consider a mode

q̂l ∈ ∆Ka where ∆Ka is a type(n + 1) kernel. Then for all

J, we have

S J
l = Pre(q̂l,

⋃

{l1|q̂l1
∈R̂(q̂l ,Y)∩∆Ka}

S J−1
l1

⋃

{l∗
1
|q̂l∗

1
∈R̂(q̂l ,Y)\∆Ka}

S J−1
l∗
1

),

(4)
where q̂l∗

1
belongs to type(1), . . . , type(n) kernels. By the

induction assumption, there exists N∗ such that S N
l∗
1

=

S N+1
l∗
1

= S N∗

l∗
1

for all N > N∗. Let then J > N∗. Let q̂0

be the maximal element of ∆Ka and assume that we can

transition from mode q̂l to q̂0 in N1 transitions. Starting

from mode q̂0, the discrete flow can visit q̂0 again, since

q̂0 is in ∆Ka. We consider the shortest path in which the

discrete flow starts at q̂0 and reaches back to q̂0, in N2

transitions, after visiting all the modes in ∆Ka. Let us
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also assume that J = i > N∗+N1+N2. Then, we have that

q̂0 ∈ {R̂(q̂lN1−1
,Y) ∩ ∆Ka} and q̂0 ∈ {R̂(q̂lN1+N2−1

,Y) ∩ ∆Ka}.

Note that by Proposition 2 (iv), the right hand side of

equation (4), with q̂l replaced by q̂0 and J = i, contains

S i
l
. In the resulting expression, we substitute S i−1

l1
=

Pre(q̂l1 ,
⋃

{l2 |q̂l2
∈R̂(q̂l1

,Y)∩∆Ka}
S i−2

l2

⋃

{l∗
2
|q̂l∗

2
∈R̂(q̂l1

,Y)\∆Ka}
S i−2

l∗
2

)

and obtain

S i
l ⊆ Pre

























q̂0,
⋃

{l∗
1
|q̂l∗

1
∈R̂(q̂l ,Y)\∆Ka}

S i−1
l∗
1

⋃

{l1 |q̂l1
∈R̂(q̂l ,Y)∩∆Ka}

Pre

























q̂l1 ,
⋃

{l2 |q̂l2
∈R̂(q̂l1

,Y)∩∆Ka}

S i−2
l2

⋃

{l∗
2
|q̂l∗

2
∈R̂(q̂l1

,Y)\∆Ka}

S i−2
l∗
2

















































.

(5)

Employing Proposition 2 (vi) to the right hand side of

(5), we obtain

S i
l ⊆ Pre

























q̂0,
⋃

{l∗
1
|q̂l∗

1
∈R̂(q̂l ,Y)\∆Ka}

S i−1
l∗
1

⋃

{q̂l1
∈R̂(q̂l ,Y)∩∆Ka}

⋃

{l∗
2
|q̂l∗

2
∈R̂(q̂l1

,Y)\∆Ka}

S i−2
l∗
2

⋃

{q̂l1
∈R̂(q̂l ,Y)∩∆Ka}

⋃

{l2 |q̂l2
∈R̂(q̂l1

,Y)∩∆Ka}

S i−2
l2

























.

(6)

To simplify notation, let us define Sl∗
1

:=
⋃

{l∗
1
|q̂l∗

1
∈R̂(q̂l ,Y)\∆Ka}

S i−1
l∗
1

and Sl∗m :=
⋃

{q̂l1
∈R̂(q̂l ,Y)∩∆Ka}

∪ . . . ∪
⋃

{q̂lm−1
∈R̂(q̂lm−2,Y)∩∆Ka}

⋃

{l∗m |q̂l∗
m−1
∈R̂(q̂lm−2

,Y)\∆Ka}
S i−m

l∗m
for 1 < m

< i. Equation (6) becomes S i
l
⊆ Pre(q̂l,Sl∗

1
∪

Sl∗
2

⋃

{q̂l1
∈R̂(q̂l ,Y)∩∆Ka}

⋃

{l2 |q̂l2
∈R̂(q̂l1

,Y)∩∆Ka}
S i−2

l2
).

Employing equation (4) with J = i − 2 for

S i−2
l2

in the above expression and employing Propo-

sition 2 (vi), we obtain S i
l
⊆ Pre(q̂l,Sl∗

1
∪ Sl∗

2
∪

Sl∗
3

⋃

{q̂l1
∈R̂(q̂l ,Y)∩∆Ka}

⋃

{q̂l2
∈R̂(q̂l1

,Y)∩∆Ka}

⋃

{l3 |q̂l3
∈R̂(q̂l2

,Y)∩∆Ka}

S i−3
l3

). Proceeding by repeatedly expanding S i−m
lm

for m =

3, . . . , i − 1 and employing Proposition 2 (vi), we obtain

S i
l ⊆ Pre





















q̂0,Sl∗
1
∪ . . .Sl∗

i

⋃

{q̂l1
∈R̂(q̂l ,Y)∩∆Ka}

⋃

{q̂l2
∈R̂(q̂l1

,Y)∩∆Ka}

. . .
⋃

{li |q̂li
∈R̂(q̂li−1

,Y)∩∆Ka}

Pre(q̂li , B)





















,

(7)

in which Sl∗m :=
⋃

{q̂l1
∈R̂(q̂l ,Y)∩∆Ka}

. . .
⋃

{q̂lm−1
∈R̂(q̂lm−2

,Y)∩∆Ka}
⋃

{l∗m |q̂l∗m
∈R̂(q̂lm−1

,Y)\∆Ka}
S i−m

l∗m
for m ≤ i. Note that since

q̂l∗m < ∆Ka, it belongs to a kernel of type less than or

equal to n which implies that Sl∗m is a fixed point of

Algorithm 1 for i − m ≥ N∗ (in particular for m ≤

N1 + N2). According to our assumption, starting from

q̂l we can reach q̂0 in N1 transitions and from q̂0 we

can reach q̂0 again in N2 transitions after visiting all the

modes in ∆Ka. Thus we have for m = N1 + N2 that

{
⋃

{q̂l1
∈R̂(q̂l ,Y)∩∆Ka}

. . .
⋃

{lm−1 |q̂lm−1
∈R̂(q̂lm−2

,Y)∩∆Ka}
q̂lm−1
} = ∆Ka.

The set K := {
⋃

{q̂l1
∈R̂(q̂l ,Y)∩∆Ka}

. . .
⋃

{q̂lm−1
∈R̂(q̂lm−2

,Y)∩∆Ka}
⋃

{l∗m |q̂l∗m
∈R̂(q̂lm−1

,Y)\∆Ka}
q̂l∗m} consists of all the modes not in

∆Ka that can be reached in one transition from modes

in ∆Ka. This implies that the sets in {Sl∗
1
, . . . ,Sl∗

N1+N2
}

are the fixed points of Algorithm 1 for the modes that

can be reached from each mode in kernel ∆Ka in one

transition. Let us denote these sets by {S1∗ ,S2∗ , . . . ,SKa
∗ }.

The elements of {Sl∗
N1+N2+1

, . . . ,Sl∗
i
} are the sets obtained

in each iteration of Algorithm 1 for the modes that

can be reached from each mode in kernel ∆Ka in

one transition, and thus are subsets of the fixed points

{S1∗ ,S2∗ , . . . ,SKa
∗ }. Thus equation (7) simplifies to S i

l
⊆

Pre(q̂0,
⋃

{ j|q̂ j∈∆Ka}
(S j∗ ∪ Pre(q̂ j, B))), which further simpli-

fies to S i
l
⊆ Pre(q̂0,

⋃

{ j|q̂ j∈∆Ka}
S j∗ ) by Proposition 2 (vi).

Now, S i
l
⊇ S

i−N1

lN1

= Pre(q̂lN1
,
⋃

{lN1+1 |q̂lN1+1
∈R̂(q̂lN1

,Y)∩∆Ka}

S
i−N1+1

lN1+1

⋃

{l∗
N1+1
|q̂l∗

N1+1
∈R̂(q̂lN1

,Y)\∆Ka}
S

i−N1+1

l∗
N1+1

). Since q̂0 is

reachable from q̂l in N1 transitions, we have that

q̂0 ∈
⋃

{lN1
| q̂lN1

∈ R̂(q̂lN1−1
,Y)∩∆Ka}

q̂lN1
. Thus S i

l
⊇ Pre (q̂0,

⋃

{lN1−1 | q̂lN1−1
∈R̂(q̂lN1

,Y)∩∆Ka}
S

i−N1−1

lN1−1

⋃

{l∗
N1−1

| q̂l∗
N1−1
∈R̂(q̂lN1

,Y)\∆Ka}

S
i−N1−1

l∗
N1−1

). Simplifying the right hand side of this equation

by repeatedly applying equation (4) and Proposition 2

(vi), we obtain S i
l
⊇ Pre(q̂0,

⋃

{ j∗|q̂ j∗∈∆Ka}
S j∗ ).

Thus S i
l
= Pre(q̂0,

⋃

{ j∗ |q̂ j∗∈∆Ka}
S j∗ ), in which S j∗ can be

computed in a finite iteration. As a consequence, also S i
l

can be computed in a finite iteration. Since the algorithm

terminates for kernels of any type, it terminates for the

transition system described in (2).

C. Control Map

Once the sets Ĉq̂i
are computed for all q̂i as uncon-

trollable predecessors of a suitable set (Theorem 1), we

mathematically characterize the set of all control maps

that keep the state of Ĥ outside Ĉ by employing viability

theory [2]. Let X be a normed space and let K ⊂ X be

nonempty. The contingent cone to K at x ∈ K is the set

given by TK(x) := {v ∈ K | lim infh→0+
dK (x+hv)

h
= 0}, in

which dK(y) denotes the distance of y from set K, that is,

dK(y) := infz∈K‖y − z‖. Thus, when K is an open set, the

contingent cone to K at any point in K is always equal to

the whole space. If K is a differentiable manifold, TK(x)

coincides with the tangent space to K at x. A set valued

map F : X → 2X is said Marchaud if (i) the graph and

the domain of F are nonempty and closed; (ii) for all

x ∈ X, F(x) is compact, convex and nonempty; (iii) F

has linear growth, that is, there exist α > 0 such that

for all x ∈ X we have sup{‖v‖ | c ∈ F(x) ≤ c(‖x‖ + 1)}.

Further, we say that F is Lipschitz continuous on X if

there is λ > 0 such that for all x1, x2 ∈ X we have that

F(x1) ⊆ F(x2) + λ‖x1 − x2‖B1(0), in which B1(0) is a ball

in X of radius 1 centered at 0. We say that F is piecewise

Lipschitz continuous on X if it is Lipschitz continuous on

a finite number of sets Xi ⊂ X for i = 1, ...,N that cover

X, that is,
⋃N

i=1 Xi = X, and Xi ∩ X j = ∅ for i , j.
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Proposition 6: Let F : X → 2X be a set-valued

Marchaud map. Assume that F is piecewise Lipschitz

continuous on X. A closed set K ⊆ X is invariant under

F if and only if F(x) ⊆ TK(x) for all x ∈ K.

Proof: (Sketch) We construct from F an impulse

differential inclusion whose x trajectories are the same as

the ones of the system ẋ ∈ F(x) and then apply Theorem

3 from [3] to the resulting impulse differential inclusion

to conclude invariance of K.

To simplify notation, for q̂ ∈ Q̂ define a map f̄ such

that { f (x, α, u, d), α ∈ q̂, d ∈ ∆} = { f̄ (x, u, θ), θ ∈ Θ(q̂)}.

That is, we incorporate all the uncertainty introduced by

α ∈ q̂ and d ∈ ∆ in one parameter θ that varies in a set

Θ(q̂) dependent on the mode q̂. Let then Lq̂ := X\Ĉq̂ for

all q̂ ∈ Q̂ and consider the set valued map defined as

Π(x, q̂) := {u ∈ U | f̄ (x, u, θ) ∈ TLq̂
(x) ∀θ ∈ Θ(q̂)}.

Theorem 3: Assume that π(x, q̂) for any mode q̂ is

such that the set-valued map F(x) := { f̄ (x, π(x, q̂), θ), θ ∈

Θ(q̂)} is Marchaud and piecewise Lipschitz on X. Then,

the set (X×Q̂)\Ĉ is invariant for Ĥπ if and only if π(x, q̂) ∈

Π(x, q̂).

Proof: (⇐) Assume that π(x, q̂) ∈ Π(x, q̂) and that

(x̂(t0), q̂(t0)) < Ĉ, we show that all (x̂(t), q̂(t)) < Ĉ for

all t ≥ t0. Let {tk}k>0 be the sequence of times at which

there is a mode shift, we show that (x̂(t), q̂(t)) < Ĉ

for all t ∈ [tk, tk+1] for all k ≥ 0. This is shown by

induction argument on k. (Base case) By assumption we

have that (x̂(t0), q̂(t0)) < Ĉ. (Induction step) Assume that

(x̂(tk), q̂(tk)) < Ĉ. We show that this implies (x̂(t), q̂(t)) < Ĉ

for all t ∈ (tk, tk+1]. This in turn is equivalent to show that

x̂(t) < Ĉq̂(tk) for all t ∈ (tk, tk+1) and x̂(tk+1) < Ĉq̂(tk+1). Since

Ĉq̂(tk+1) ⊆ Ĉq̂(tk) by the properties of the Pre operator and

by Proposition 4, it is enough to show that x̂(t) < Ĉq̂(tk) for

all t ∈ (tk, tk+1]. For t ∈ (tk, tk+1), the trajectory x̂(t) of Ĥπ

satisfies ˙̂x = f̄ (x̂, π(x̂, q̂(tk)), θ), θ ∈ Θ(q̂(tk)), in which

we denote F(x̂) := { f̄ (x̂, π(x̂, q̂(tk)), θ), θ ∈ Θ(q̂(tk))}.

Since π(x̂, q̂) ∈ Π(x̂, q̂), it follows that f̄ (x̂, π(x̂, q̂(tk)), θ) ∈

TLq̂(tk )
(x̂) for all θ ∈ Θ(q̂(tk)), which in turn implies that

F(x̂) ⊆ TLq̂(tk)
(x̂). Proposition 6 thus implies that Lq̂(tk) is

invariant by F. Therefore, we have that x̂(t) ∈ Lq̂(tk) for all

t ∈ (tk, tk+1]. Thus, x̂(t) < Ĉq̂(tk) for all t ∈ (tk, tk+1].

(⇒) The fact that if π(x, q̂) < Π(x, q̂) the set (X× Q̂)/C

is not invariant for Ĥπ follows from Proposition 6.
IV. A E

Consider two vehicles merging on an intersection (Fig.

1). In this paper, we assume that one of the two vehicles

does not have an on-board controller and the two vehicles

do not communicate. We model the non-communicating

vehicle as a hybrid automaton with modes that undergo

non-autonomous transitions due to the discrete disturbance

control input from the human driver. These modes model

the vehicle in either braking or acceleration maneuver.

In the proximity of the intersection, we assume that the

human driver either decides to brake or accelerate and that

the mode remains the same.

Fig. 1. Two vehicles merging on an intersection. If two vehicles
are both in the shaded region, a collision occurs.

The hybrid automaton that models the above

system is H = (Q, X,U,∆,Σ,R, f ), in which

X ⊆ R4,Q = {q1, q2}. The X coordinate system is

taken along the path of the vehicles. The bad set is given

as B = {x ∈ X | (x1, x3) ∈ (L1,U1) × (L2,U2)},

where L1,U1, L2 and U2 are shown in Fig. 1,

(x1, x3) are the positions of the vehicles along their

paths and (x2, x4) are their longitudinal speeds.

Longitudinal dynamics of the vehicle is modeled as

a second order system [18]. Since the mode cannot

switch, ẋ = f (x, q, u, d), x = (x1, x2, x3, x4), and

f (x, q, u, d) = ( f1(x, q, d), f2(x, u)) , with

f1(x, q, d) =



















(x2, bq + d), if x2 ∈ [x2min, x2max]

(x2, 0), if x2 ≤ x2min and bq + d < 0

or x2 ≥ x2max and bq + d > 0,
(8)

f2(x, u) =



















(x4, u), if x4 ∈ [x4min, x4max]

(x4, 0), if x4 ≤ x4min and u < 0

or x4 ≥ x4max and u > 0,

(9)

d ∈ [−D,D] and u ∈ [uL, uH]. The continuous state can
be measured, for example by road side speed sensors, and

communicated by the infrastructure. In this example, since

the mode does not switch and the continuous dynamics

are linear in the parameters, we can use the least squares

method to construct F (x̃[t−T,t]).

Assume 0 ∈ [bqi
−D, bqi

+D]. Consider system (8) with

q = qi and let b̂ = 1
T

∫ τ

τ−T
ẋ2(τ)dτ, τ ≥ T 1. Then one can

show that |b̂ − bqi
| ≤ D. Thus, we define

F (x̃[t−T,t]) =

{

{q1, q2} i f |b̂ − bqi
| ≤ D, i ∈ {1, 2}

{qi} i f |b̂ − bq j
| > D, j , i

(see

[10] for more details).

Since 0 ∈ [bqi
−D, bqi

+D], i ∈ {1, 2} we define f̄1(x̂, θ) ,

(x̂2, θ) with θ ∈



























[

bq1
− D, bq2

+ D
]

, if q̂ = q̂1
[

bq1
− D, bq1

+ D
]

, if q̂ = q̂2
[

bq2
− D, bq2

+ D
]

, if q̂ = q̂3

.

Employing Algorithm 1, we obtain Ĉq̂1
= Pre(q̂1, B ∪

Pre(q̂2, B) ∪ Pre(q̂3, B)), Ĉq̂2
= Pre(q̂2, B), Ĉq̂3

= Pre(q̂3, B).

Using Proposition 2, these expressions further simplify to

Ĉq̂1
= Pre(q̂1, B), Ĉq̂2

= Pre(q̂2, B), Ĉq̂3
= Pre(q̂3, B).

1In practice, measurement of acceleration will not be required as
discrete time models will be considered for implementation.
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Fig. 2. The yellow set, green set and intersection of these sets represent the

slice, corresponding to the current speeds, of Pre(q̂, B)H ,Pre(q̂, B)L and the capture

set, Pre(q̂, B) in the (x3, x1) plane, respectively. The current position of the two

vehicles (x3, x1) is shown as a red circle and set [L1 ,U1] × [L2 ,U2] is shown as a

red rectangle in the figures above.

In order to calculate Pre(q̂1, B), Pre(q̂2, B) and

Pre(q̂3, B) numerically, we use the following relationship

[11] Pre(q̂, B) = Pre(q̂, B)L∩Pre(q̂, B)H, where, Pre(q̂, B)L

= {x ∈ X | ∃ t, ∃ d̃t s.t. some φx̂(t, (x, q̂), d̃t, uL, ǫ) ∈ B} and

Pre(q̂, B)H = {x ∈ X | ∃ t,∃ d̃t s.t. some φx̂(t, (x, q̂), d̃t, uH ,

ǫ) ∈ B}. Since B is an open box in the (x1, x3) coordinates,

the sets Pre(q̂, B)L and Pre(q̂, B)H can be easily computed

with a linear complexity discrete time algorithm [6].

A feedback map π(x, q̂), that satisfies Theorem 3 is

given by

π(x, q̂) :=































uL i f x ∈ Pre(q̂, B)H ∧ x ∈ ∂Pre(q̂, B)L

uH i f x ∈ Pre(q̂, B)L ∧ x ∈ ∂Pre(q̂, B)H

uL i f x ∈ ∂Pre(q̂, B)L ∧ ∂Pre(q̂, B)L

∗ otherwise.

A. Simulation Results

The bad set B is such that Li = 500,Ui = 550 for

i ∈ {1, 2}. We consider a discrete time model with time

step ∆t = 0.1 seconds, u ∈ [−1, 1], bq1
= −0.4, bq2

= 0.4

and d ∈ [−0.6, 0.6]. We take T = 0.5 seconds to generate

the least square estimate b̂. If b̂ ∈ [−1,−0.2], q̂ = {q1},

if b̂ ∈ [0.2, 1], q̂ = {q2}, and if b̂ ∈ [−0.2, .2], q̂ =

{q1, q2}. Simulation results are presented in Fig. 2 for

the case when the vehicle controlled by nature is running

in mode q2. The initial estimated mode is q̂1 = {q1, q2}.

At the beginning, the measurement data is not sufficient

to determine which mode the system is in, thus the

estimated mode is the same as the initial mode, q̂1 (Fig.

2, top left). At 1.3 seconds, the mode shifts from q̂1 to

q̂3. Correspondingly, in Fig. 2 top right, the capture set

changes and we also note that the new capture set is a

subset of Pre(q̂1, B). The system flow hits the boundary

of the capture set Pre(q̂3,B) at 11.4 seconds (Fig. 2 bottom

left) and a control input u = −1 is applied by the controller

that keeps the continuous state flow outside the capture set

(Fig. 2 bottom right).

V. C

We have addressed a continuous control problem for

a hybrid automaton with unknown discrete state. We

have provided an algorithmic procedure for computing

the capture set in the non-deterministic information state

space. We have then provided the dynamic feedback map

that renders the complement of the capture set invari-

ant. Termination conditions were provided. The proposed

algorithm has been illustrated on a collision avoidance

scenario involving two non-communicating vehicles at a

traffic intersection. In our future work, we will incorporate

discrete control inputs and continuous state uncertainty.

Furthermore, we will identify classes of systems for which

the assumptions of the termination theorem (Theorem

2) hold and investigate connections with bisimulation

techniques.
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