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Abstract— A long-standing challenge in synthetic biology is
to engineer biomolecular systems that can perform robustly
in highly uncertain cellular environments. Recently, there has
been increasing interest to design biomolecular feedback con-
trollers to address this challenge. Molecular sequestration is
one of the proposed feedback mechanisms. For this type of
design, when all reactions within the controller are sufficiently
fast, the process output can reach a set-point regardless of
parametric uncertainties and constant disturbances. However,
as we demonstrate in this paper, the way in which molecular
sequestration affects the fast controller dynamics leads to a sin-
gular singularly perturbed (SSP) system. In an SSP system, the
boundary layer Jacobian is singular and thus standard singular
perturbation approaches cannot be applied, posing difficulties
to analytically determine the performance of sequestration-
based controllers. In this paper, we consider a class of linear
systems that capture the key structure of sequestration-based
controllers. We show that, under certain technical conditions,
these SSP systems can still be approximated by reduced-order
systems that are dependent on the small parameter. This result
allows us to analytically evaluate the tracking performance of
the linearized model of a sequestration-based controller.

I. INTRODUCTION

Synthetic biology is an emerging research area at the inter-
section of biology and engineering aimed at creating useful
biomolecular systems for biotechnology applications, from
health, to environment, to energy [1]. However, biomolecular
systems constructed nowadays often lack robustness, pre-
dictability, and precision when operating in highly variable
and uncertain cellular environments [2]. Several feedback
controllers realizable through biomolecular reactions have
been proposed recently to address these problems [2]. Molec-
ular sequestration, in which two species bind together and
annihilate, is one of the proposed feedback mechanisms. The
production rates of the two species, which we call controller
species, each reflect the concentrations of the reference input
and process output [3], [4], [5], [6], [7] (see an example in
Section II). When such a controller is implemented in living
cells, it can achieve set-point regulation if the production and
annihilation rates of the controller species are much larger
than the rate of cell growth, which typically dictates the
dynamics of the process to be regulated [5], [6], [7]. We
call the resultant controllers fast sequestration-based feed-
backs (FSFs). While numerical studies and experiments have
demonstrated the effectiveness of FSFs to perform set-point
regulation and reference tracking (e.g., [4], [8]), analytical
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approaches to determine conditions for these objectives are
still largely missing [5], [7].

The fact that controller reactions in an FSF are much
faster than the reactions in the process to be regulated can
be exploited to determine the properties of FSFs. While two-
time-scale systems are often studied by singular perturbation
(SP) [9], we find that standard SP is inapplicable to FSF
systems. In particular, if one regards the concentrations of
the two controller species as fast variables, the Jacobian of
the boundary layer (BL) is singular everywhere in the state
space. In SP literatures, such a system is called a singular
singularly perturbed (SSP) system [10], [11], [12], [13].
While existing results have provided conditions to reduce
the dimensionality of SSP systems, we find that the FSFs
we consider do not satisfy these conditions.

In this paper, we perform model reduction for a class
of linear SSP systems arising from linearized FSF models
as a first step to analyze the dynamics of FSFs and more
general SSP problems emerging from them. Our analysis
reveals that such an SSP system cannot be approximated
by an ε-independent reduced model, where ε is the small
parameter quantifying the timescale separation. However,
under appropriate technical conditions, we prove that its
trajectory can be effectively approximated by that of an ε-
parameterized reduced system. In particular, if the process
to be regulated is passive, then the reduced system can be
regarded as a high-gain (1/ε) feedback interconnection of
two passive systems (Section IV). Because of this feedback
structure, we demonstrate in Section V that even when exact
parameter values in an FSF are poorly known, arbitrarily
small reference tracking error can still be achieved by
increasing the controller reaction rates.

II. MOTIVATING APPLICATION

In Fig. 1, we show an FSF system, where two controller
species c1 and c2 regulate the concentration of a single
protein p. Production rate of c1 is proportional to a reference
u(t), which often reflects the concentration of a molecular
stimulus, and c1 activates the production of protein p.
Species c2 is a “sensor”, whose production rate is propor-
tional to the concentration of the output (p). Meanwhile, all
species (i.e., c1, c2,p) are diluted at rate constant δ due to
cell growth. These processes follow the chemical reactions:

∅ u(t)/ε−→ c1, p
α/ε−→ p + c2, c1 + c2

θ/ε−→ ∅, (1a)

c1
β−→ c1 + p, c1, c2,p

δ−→ ∅. (1b)
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All rate constants are positive, and the small parameter
0 < ε � 1 models the fact that the rates of production
and annihilation of c1 and c2 in (1a) are much larger than
the reaction rates in (1b). In fact, it is shown in [5] that if
u(t) is a constant and ε is small enough, then the equilibrium
output p̄ satisfies: p̄ = u/α + O(ε), making FSFs ideal for
synthetic biology applications where protein concentration
needs to be robustly and tightly regulated at a constant level
(e.g., [6]), regardless of, for example, uncertainty in protein
production rate β. A mass-action kinetic model of (1) takes
the following ordinary differential equation form:

εċ1 = u(t)− εδc1 − θc1c2,
εċ2 = αp− εδc2 − θc1c2,
ṗ = βc1 − δp.

(2)

At a first glance, system (2) appears to have two timescales,
with c1 and c2 being the fast variables and p being the slow
variable. Following the standard SP procedure [9], we write
(2) in the fast timescale τ = t/ε:

dc1/dτ = u(t)− εδc1 − θc1c2,
dc2/dτ = αp− εδc2 − θc1c2,
dp/dτ = εβc1 − εδp,

(3)

and then set ε = 0 to “freeze” the slow variable p to obtain
the BL dynamics of (2):

dc1/dτ = u− θc1c2, dc2/dτ = αp− θc1c2. (4)

Since the Jacobian of (4) is singular in the entire BL state
space, system (2) is SSP. This property arises from the
annihilation reaction, c1 + c2 → ∅, which affects both fast
variables (c1 and c2) in an identical fashion (−θc1c2/ε). SSP
problems have been studied in [10], [11], [12], [13]. For these
results to be applicable to (2), it is necessary for the Jacobian
matrix of the fast timescale system (3) evaluated at ε = 0:−θc2 −θc1 0

−θc2 −θc1 α
0 0 0

 (5)

to have a zero eigenvalue with same algebraic and geomet-
ric multiplicities. Assuming that this condition is satisfied,
system (2) can be transformed into standard SP form under
additional technical conditions [10], [11], [12], [13]. How-
ever, the zero eigenvalue of (5) has algebraic multiplicity
2 and geometric multiplicity 1 for any positive c1, c2 and
parameters α and θ. In fact, applying the test in [14] to (2),
we can prove that there does not exist any ε-independent
transformation to take (2) to standard SP form.

Given that the BL Jacobian is singular everywhere in the
state space, linearizing (2) about any steady state leads to
a similar SSP problem. In addition, the multiplicities of
the zero eigenvalue of the Jacobian (5) is independent of
where it is evaluated in the state space, and consequently,
the difficulties applying existing SSP results to nonlinear
FSFs carry over to linearized FSFs. In fact, with reference
to Fig.1B, when we numerically evaluate the poles of a
linearized FSF (see Section V), we find that it has a fast
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Fig. 1. An example fast sequestration-based feedback (FSF) system. (A)
Interactions among molecular species. (B) Poles of a linearized FSF as ε
changes. The linearized model is (24) with α = β = θ = δ = ū = 1.

mode (that behaves like e−t/ε) and a high frequency damped
oscillatory mode (that behaves like e−t sin(t/

√
ε)). One

would therefore expect the reduced system of a linearized
FSF to contain the parameter ε to capture this high frequency
damped oscillatory mode, which persists for ε small. This
observation further reinforces our conclusion that existing SP
and SSP tools are inapplicable to the FSFs, because existing
tools always lead to an ε-independent reduced system.

III. PROBLEM FORMULATION
In this section, we describe the linear SSP problem we

consider and introduce a transformation to classify the sys-
tem state variables into three categories. We then construct
a candidate reduced system by setting state variables in one
of the categories to quasi-steady state.

A. Singular Singularly Perturbed Systems

We consider an ε-parameterized linear SP system subject
to a scalar time-varying input u(t). We use bold face u
for the derivatives of u(t) (i.e., u = [u, u̇, ü, · · · , u(n)])
and write u ∈ L∞ to indicate that u(t) has bounded, ε-
independent derivatives. We write the system as:

ξ̇1 = Aε11ξ1 +Aε12ξ2 + F ε1u(t),

εξ̇2 = Aε21ξ1 +Aε22ξ2 + F ε2u(t),
(6)

in which (ξ1, ξ2) ∈ Rq+p. We use Aεij to denote that the
ε-dependent matrix Aij(ε) is a finite power series of ε such
that Aεij :=

∑m
k=0A

k
ijε

k for some non-negative integer m.
In the fast timescale, (6) can be equally represented by

dξ1/dτ = εAε11ξ1 + εAε12ξ2 + εF ε1u(t),

dξ2/dτ = Aε21ξ1 +Aε22ξ2 + F ε2u(t).
(7)

By setting ε = 0, we “freeze” the slow ξ1 dynamics to obtain
the BL dynamics:

dξ2/dτ = A0
21ξ1 +A0

22ξ2 + F 0
2 u(t). (8)

We study the SSP problem in which A0
22 is singular. More

specifically, motivated by the properties of (5) in the FSF,
we make the following assumption on the system matrix of

(7) evaluated at ε = 0: A0 :=

[
0 0
A0

21 A0
22

]
.

Assumption 1: The zero eigenvalue of A0 has algebraic
multiplicity µ = q+ 1 and geometric multiplicity λ = q. All
other eigenvalues of A0 have negative real parts.
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Remark 1: In a standard SP problem, A0
22 is Hurwitz. As

a result, the zero eigenvalue of A0 must have multiplicities
µ = λ = q, which is consistent with the dimension of the
slow variable ξ1. When A0

22 has a zero eigenvalue, we are
faced with an SSP problem. For a subclass of SSP problems,
where the multiplicities of the zero eigenvalue satisfy µ = λ,
existing results can be applied for model reduction [10], [11],
[12], [13]. However, the type of singularity in Assumption
1, where µ = q + 1 6= q = λ, cannot benefit from these
previous results.

B. Transformation to Normal SSP Form

In this section, we utilize a transform of (6) to classify the
state variables in an SSP problem into three categories. The
following Lemma describes the transformed system, which
we say is in normal SSP form.

Lemma 1: There exists a non-singular real matrix P ,
independent of ε, such that with z = Pξ, system (6) can
be transformed into the following normal SSP form:

ż1 = Eε11z1 + Eε12z2 + Eε13z3 +Bε1u(t), (9a)
εż2 = Rεz1 + εEε22z2 + εEε23z3 +Bε2u(t), (9b)
εż3 = εEε31z1 + εEε32z2 + Sεz3 +Bε3u(t). (9c)

where z1 = ξ1 ∈ Rq , z2 is a scalar, z3 ∈ Rp−1. The matrix
R0 ∈ R1×q is nonzero, and S0 ∈ R(p−1)×(p−1) is Hurwitz.

Proof: We derive this result using the fast timescale
system (7), which can be re-written as

d

dτ

[
ξ1
ξ2

]
= (

[
0 0
A0

21 A0
22

]
︸ ︷︷ ︸

A0

+ε

[
Aε11 Aε12

Ãε21 Ãε22

]
︸ ︷︷ ︸

Aε

)

[
ξ1
ξ2

]
+

[
εF ε1
F ε2

]
u,

where Ãεij :=
∑
k=1A

k
ijε

k−1 = O(1). By Assumption 1,
A0

22 must have a non-repeated zero eigenvalue. Therefore,
there exists a unique invertible matrix V ∈ Rp×p to take A0

22

to real Jordan form: V −1A0
22V =

[
0 0
0 S0

]
, where the (p−

1)×(p−1) matrix S0 is Hurwitz. Let V −1 =

[
W11 W12

W21 W22

]
,

where W11 is a scalar and W22 is a (p−1)× (p−1) matrix,
and let [(R0)T , (M0)T ]T := V −1A0

21, where R0 ∈ R1×q

and M0 ∈ R(p−1)×q , the ε-independent transformation z =

Pξ is carried out by P :=

 I 0 0
0 W11 W12

M0 S0W21 S0W22

 . The

resultant z dynamics can be written as

d

dτ
z =

 0 0 0
R0 0 0
0 0 S0

+ εEε

 z +

εBε1Bε2
Bε3

u, (10)

where Eε := PAεP−1, and Bε := PF ε are all O(1). Note
that since the upper-left q×q block of P is identity, we have
z1 = ξ1 ∈ Rq and Bε1 = F ε1 . By denoting Rε := R0 + εEε21

and Sε := S0+εEε33, system (10) is equivalent to (9) in slow
timescale. Matrix R0 must not be 0, for if otherwise, one
would have PA0P−1 = diag{0, S0}, whose zero eigenvalue
has multiplicities µ = λ = q+1, violating Assumption 1.

Fig. 2. The candidate reduced system can be decomposed as two
subsystems interconnected through high-gain negative feedback.

C. Candidate Reduced System

At a high level, the transformation to normal SSP form
separates out three sets of state variables. (A) The dynamics
of z3 ∈ Rp−1 becomes faster as ε decreases, we therefore
call z3 the fast variable. According to (9c), the O(1) z3

dynamics are decoupled from that of z1 and z2. Roughly
speaking, this decoupling guarantees that fast convergence
of z3 to its quasi-steady state is minimally affected by the
slow dynamics, which may contain a high frequency damped
oscillatory mode, as we have seen in Fig. 1B. (B) The O(1)
dynamics of z1 ∈ Rq are unaffected by ε, we therefore call z1

the slow variable. (C) As ε decreases, z1 has a larger effect
on the scalar z2 dynamics (through Rε/ε). Yet, it does not
make z2 dynamics faster. We call z2 the pseudo-fast variable.

Based on this reasoning, we investigate whether we can
obtain a reduced model of (9) by setting z3 to quasi-steady
state. In particular, by setting ε = 0 in (9c), we have

0 = S0z̄3 +B0
3u(t) ⇒ z̄3 = −(S0)−1B0

3u(t), (11)

We construct a candidate reduced system whose states xi are
intended to approximate zi in the full system in equation (9).
The reduced system is obtained by 1) substituting z̄3 in (11)
into the z1 and z2 dynamics in (9), and 2) setting all O(ε)
terms in z1 and z2 dynamics to 0. This procedure results in
the following candidate reduced system:[

ẋ1

ẋ2

]
=

[
E0

11 E0
12

R∗/ε E0
22

] [
x1

x2

]
+

[
B0

1r

B∗2r/ε

]
u(t), (12a)

x3 = z̄3 = −(S0)−1B0
3u(t), (12b)

where,

R∗ = R0 + εR1, B0
1r = B0

1 − E0
13(S0)−1B0

3

B∗2r = B0
2 + εB1

2 − εE0
23(S0)−1B0

3 .
(13)

As shown in Fig. 2, the candidate reduced system (12a)
can be decomposed into the feedback interconnection of two
subsystems. Specifically, the two subsystems are:

Σε1 :=

{
ẋ1 = E0

11x1 + E0
12v1 +B0

1ru,

y1 = −R∗x1 = −(R0 + εR1)x1,

Σ2 :=

{
ẋ2 = E0

22x2 + v2,

y2 = x2.

(14)

where x1 ∈ Rq and y1, x2, y2 are scalars. The two subsys-
tems are interconnected according to the rule v1 = y2 and
v2 = (B∗2ru−y1)/ε. We place the following assumptions on
subsystems Σ2 and Σ0

1.
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Assumption 2: (i) The scalar E0
22 < 0. (ii) The pair

(E0
11, E

0
12) is controllable, and the pair (E0

11, R
0) is observ-

able. (iii) The transfer function from v1 to y1 in Σ0
1:

H0
1 (s) := −R0(sI − E0

11)−1E0
12 (15)

is strictly proper, strictly positive real (SPR) and does not
contain a zero at E0

22.
According to Assumption 2, the transfer function of Σ2,
H2(s) = 1/(s+E0

22), is also SPR. Hence, the candidate re-
duced system can be regarded as a high-gain (1/ε) feedback
interconnection of two SPR subsystems Σε1 and Σ2 (Fig. 2).

IV. CLOSENESS OF TRAJECTORIES

In this section, we analyze the error dynamics between
the full system (9) and the candidate reduced system (12) to
demonstrate that their trajectories are close to each other.

A. Error Dynamics

We define the error between the full system and the
candidate reduced system as ei := zi − xi. The resultant
error dynamics consist of feedback interconnection of a slow
error system (e1, e2) and a fast error system (e3):[

ė1

ė2

]
= As(ε)

[
e1

e2

]
+Bεsee3 + εBεsx

[
x1

x2

]
+ εBεsuu, (16)

εė3 = Aεfe3 + εBεfe

[
e1

e2

]
+ εBεfx

[
x1

x2

]
+ εBεfu

[
u
u̇

]
. (17)

The matrices in the slow error system (16) are defined as

As(ε) :=

[
Eε11 Eε12

Rε/ε Eε22

]
, Bεse :=

[
Eε13

Eε23

]
,

Bεsx :=

[
Hε

11 Hε
12

Hε
21 Hε

22

]
, Bεsu :=

[
Hε

1u

Hε
2u

]
,

where Hε
q :=

∑
k=1E

k
ijε

k−1 (q ∈ {11, 12, 22}), Hε
21 :=∑

k=2R
kεk−2, Hε

1u :=
∑
k=1[Bk1 − Ek13(S0)−1B0

3 ]εk−1,
and Hε

2u :=
∑
k=2B

k
2 ε
k−2 −

∑
k=1E

k
23(S0)−1B0

3ε
k−1 are

all O(1). Note that we write As(ε) instead of Aεs because
it is not a power series of ε. In the fast error system
(17), Aεf := Sε, Bεfe = Bεfx := [Eε31, E

ε
32], and Bεfu :=

[
∑
k=1[Bk3 + Sk(S0)−1B0

3 ]εk−1, (S0)−1B0
3 ] are all O(1).

To determine the magnitude of the approximation errors,
we treat the error dynamics as a feedback interconnection
of the slow error system (16) and the fast error system (17).
Our subsequent analysis is aimed to obtain their respective
input-to-state stability (ISS) properties (see Claim 1-2) and
then apply an ISS small-gain theorem to provide an upper
bound for the approximation errors (Theorem 1).

B. ISS Property of the Slow Error System

Here, we first analyze the ISS property of the slow error
system. We use | · |Q to stand for the vector 2-norm weighted
by matrix Q > 0. Thus, |x|2Q = xTQ2x. Accordingly, for
a matrix A, |A|Q is the matrix induced 2-norm weighted
by Q: |A|2Q := λ̄(ATQ2A), where λ̄(·) stands for the
largest eigenvalue. For a square matrix A, we use µQ(A) to
represent the matrix measure associated with the Q-weighted
2-norm. In particular, µQ(A) is the largest eigenvalue of

the symmetric part of QAQ−1. For a signal v(t), ‖v‖a,Q is
the asymptotic signal L∞ norm weighted by Q: ‖v‖a,Q :=
lim supt→∞ |v(t)|Q. For all norms, when the weight matrix
Q is identity, we omit the subscript Q for simplicity. The
following lemma connects a system matrix measure to its
ISS property.

Lemma 2: (Theorem 1 in [15].) Consider an LTI system
ẋ = Ax+Bu(t) with input u(t), and suppose that for a real
matrix Q > 0, there exists c > 0 such that µQ(A) ≤ −c.
Then for any u(t) ∈ L∞, the system trajectory satisfies:

lim sup
t→∞

|x(t)|Q = ‖x‖a,Q ≤ |B|Q‖u‖a/c. (18)

To study the ISS property of the slow error system, we
use the following result on the matrix measure of As(ε).

Lemma 3: Under Assumption 2, there exists a real matrix
Q1 > 0 and a positive constant α, both independent of ε,
such that the matrix measure of As(ε) weighted by

Q = Q(ε) =

[
Q1 0
0
√
ε

]
(19)

satisfies µQ[As(ε)] ≤ −α for ε sufficiently small.
Proof: We split As(ε) into two parts and write it as:

As(ε) = A0
s(ε) +Dε :=

[
E0

11 E0
12

R0/ε E0
22

]
+

[
εDε

11 εDε
12

Dε
21 εDε

22

]
.

We first show that there exists an ε-independent α∗ such
that µQ[A0

s(ε)] ≤ −α∗, and then show that µQ[As(ε)] =
µQ[A0

s(ε) + Dε] ≤ −α∗ + O(
√
ε). Due to (ii)-(iii) in

Assumption 2 and the KYP lemma, there exists a real matrix
P > 0 and a positive constant ᾱ (both ε-independent) such
that PE0

11 + (E0
11)TP ≤ −2ᾱP , and PE0

12 = −(R0)T .
For any real matrices X and Y > 0, we write Π(X,Y ) :=
Y XY −1 + Y −1XTY , so Π(X,Y ) is linear in X and
µY (X) = λ̄[Π(X,Y )/2]. Take Q1 =

√
P > 0, we have

Π(A0
s, Q) =

[
Π(E0

11, Q1) Q−1
1 [PE0

12 + (R0)T ]/
√
ε

? 2E0
22

]
=

[
Q−1

1 [PE0
11 + (E0

11)TP ]Q−1
1 0

0 2E0
22

]
≤
[
−2ᾱI 0

0 2E0
22

]
,

from which we have λ̄[Π(A0
s, Q)/2] ≤ −α∗ :=

−min(ᾱ,−E0
22) < 0. On the other hand, we have

Π(Dε, Q) =
√
ε

[√
εΠ(Dε

11, Q1) Q1D12 + (Q−1
1 )TDT

21

? 2
√
εD22

]
Therefore, we can write Π(As(ε), Q) = Π(A0

s, Q)+O(
√
ε).

The proof is completed by applying eigenvalue perturbation
[16] (Sec IV, Thm 3.3) to Π(As(ε), Q): for ε small enough,
we have µQ[As(ε)] = λ̄[Π(As(ε), Q)/2] = λ̄[Π(A0

s, Q)/2]+
O(
√
ε) ≤ −α∗ + O(

√
ε) ≤ −α for some ε-independent

α > 0.
With Lemma 2-3, and by treating e3(t), x12(t) :=

[xT1 , x2]T and u(t) as external inputs to the slow error system
(16), we derive its ISS property.

Claim 1: Under Assumption 2, for e3(t), x12(t), u(t) ∈
L∞, there exists positive constants kie, kix and kiu (i = 1, 2),
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all independent of ε, such that for ε sufficiently small, the
trajectory of (16) satisfies

‖e1‖a ≤ k1e‖e3‖a + εk1x‖x12‖a + εk1u‖u‖a, (20a)

‖e2‖a ≤
k2e√
ε
‖e3‖a +

√
εk2x‖x12‖a +

√
εk2u‖u‖a. (20b)

Proof: Let e12 := [eT1 , e2]T , by applying the result in
Lemma 3 to Lemma 2, we obtain:

‖e12‖a,Q ≤
|Bεse|Q
α
‖e3‖a + ε

|Bεsx|Q
α
‖x12‖a + ε

|Bεsu|Q
α
‖u‖a.

Let d :=
√
λ(Q2

1) > 0 (ε-independent), where λ(·) stands
for the smallest eigenvalue, since d|e1(t)| ≤ |e12(t)|Q, we
have d‖e1‖a ≤ ‖e12‖a,Q, and subsequently,

‖e1‖a ≤
|Bεse|Q
αd

‖e3‖a + ε
|Bεsx|Q
αd

‖x12‖a + ε
|Bεsu|Q
αd

‖u‖a.

Similarly, since
√
ε‖e2‖a ≤ ‖e12‖a, we have

‖e2‖a ≤
|Bεse|Q
α
√
ε
‖e3‖a +

√
ε
|Bεsx|Q
α
‖x12‖a +

√
ε
|Bεsu|Q
α
‖u‖a.

By eigenvalue perturbation [16], there exists an ε-
independent κ > 0 such that |Bεse|2Q = λ̄[(Eε13)TQ2

1E
ε
13 +

ε(Eε23)TEε23] ≤ λ̄((E0
13)TQ2

1E
0
13) + κε2. Hence, for small

enough ε, there exists an ε-independent Lse > 0 such that
|Bεse|Q ≤ Lse. Similarly, we can find ε-independent Lsx
and Lsu such that |Bεsx|Q ≤ Lsx and |Bεsu|Q ≤ Lsu.
Claim 1 is proved by substituting these results into the above
inequalities for ‖ei‖a.

C. ISS Property of the Fast Error System

Now we study the ISS property of the fast error system
(17), treating e12(t) := [eT1 , e2]T , u, u̇ and x12(t) as its
inputs.

Claim 2: If Assumption 1 is satisfied, then for e12(t),
xi(t), u(t), u̇(t) ∈ L∞, there exists positive constants k3e,
k3x and k3u, all independent of ε, such that the trajectory of
(17) satisfies

‖e3‖a ≤ εk3e‖e12‖a + εk3x‖x12‖a + εk3u ‖[u, u̇]‖a , (21)

for ε sufficiently small.
Proof: By Lemma 1, A0

f = S0 is Hurwitz. Hence, there
exists ε-independent Θ and β0 such that µΘ(A0

f ) ≤ −β0.
Since B0

fe, B
0
fx and B0

fu are all ε-independent, we can
find L0

i such that |B0
i |Θ ≤ L0

i . By the same arguments
as in Lemma 3 and Claim 1, since Aεf and Bεi are ε-
regular perturbations of A0

f and B0
i , respectively, for ε small

enough, we can find positive constants β and Li such that
|Aεf |Θ ≤ −β and |Bεi |Θ ≤ Li. Note that since µΘ(Aεf/ε) =
µΘ(Aεf )/ε, by Lemma 2, we have,

‖e3‖a,Θ ≤ ε
Lfe
β
‖e12‖a + ε

Lfx
β
‖x12‖a + ε

Lfu
β
‖[u, u̇]‖a .

Since ‖e3‖a ≤ ‖e3‖a,Θ/
√
λ(Θ2), and that Θ is independent

of ε, we have (21) verified.

D. Error between the Full and the Reduced Systems

In Claim 1 and 2, the error bounds depend on the candidate
reduced system states x12. The next claim provides an upper
bound on these states.

Claim 3: Assume that u(t) has bounded derivatives (i.e.,
u ∈ L∞) and that Assumption 2 is satisfied, then there exists
a positive constant kr = kr(‖u‖∞), independent of ε, such
that for ε sufficiently small, the trajectory of (12) satisfies
‖x12‖a ≤ kr/

√
ε.

Proof: (Sketch.) Theorem 2 in [15] establishes that
tracking error of a high-gain (1/ε) negative feedback inter-
connection of two SPR systems is O(

√
ε). With reference to

Fig. 2, in the context of (14), this implies that v2 = O(1/
√
ε).

Regarding v2 as an input to the series interconnection of Σ2

and Σε1, since all matrices representing the two systems are
O(1), all state variables are bounded above by O(1/

√
ε).

Finally, based on Claim 1-3, we are ready to state our main
result, which provides ultimate upper bounds of e1 and e3

(i.e., ‖e1‖a and ‖e3‖a) that decrease asymptotically with ε.
The proof relies on the ISS small-gain theorem [17], [18].

Theorem 1: Assume that u ∈ L∞ and that Assumptions
1-2 are satisfied, then there exists positive constants Ki =
Ki(‖u‖∞), independent of ε, such that for ε sufficiently
small, the trajectories of the full system (9) and the reduced
system (12) satisfy ‖zi − xi‖a ≤ Ki

√
ε for i = 1, 3.

Proof: We treat the error dynamics as a feedback
interconnection of the slow and fast error dynamics, with
states e12 and e3 and external inputs x12(t), u(t) and u̇(t).
By inequalities (20), for ε sufficiently small, there exists ε-
independent constants kse, ksx and ksu such that the slow
error system states e12 are bounded by:

‖e12‖a ≤
kse√
ε
‖e3‖a +

√
εksx‖x12‖a +

√
εksu‖u‖a. (22)

Therefore, the input-to-state (IS) gain of the slow error
system (16) is kse/

√
ε. From (21), the IS gain of the fast

error system (17) is εk3e. Therefore, the error system IS
loop gain satisfies εk3e ·kse/

√
ε =
√
εksek3e < 1 for ε small

enough. By the ISS small gain theorem (Thm. 10.6.1 in [17]),
the error system is ISS. By substituting (22) into (21), for ε
small enough, we can find ε-independent positive constants
κx and κu such that ‖e3‖a ≤ εκx‖x12‖a + εκu‖[u, u̇]‖a.
Using the bound of ‖x12‖a developed in Claim 3, for ε
small enough, we can find a K3 = K3(‖u‖∞) > 0 such
that ‖e3‖a ≤

√
ε(κxkr +

√
εκu‖[u, u̇]‖a) ≤ K3

√
ε, and

subsequently from (20a), there exists a K1 = K1(‖u‖∞) >
0 such that ‖e1‖a ≤ K1

√
ε.

V. MOTIVATING APPLICATION REVISITED

Here, we apply Theorem 1 to perform model reduction
for the linearized FSF in Section II and then use the reduced
model to analyze its tracking performance. Suppose the input
can be written as u(t) = ū + ũ(t), according to [5], the
equilibrium ζ̄ corresponding to the constant input ū satisfies

ζ̄(ū, ε) := [c̄ε1, c̄
ε
2, p̄

ε]T =

[
δū

αβ
,
αβ

θδ
,
ū

α

]T
+O(ε). (23)
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We linearize (2) about (ū, ζ̄) to obtain εċ1 = ũ(t)− (θc̄ε2 +
εδ)c1 − θc̄ε1c2, εċ2 = αp − θc̄ε2c1 − (θc̄ε1 + εδ)c2, and ṗ =
βc1−δp. Following Lemma 1, we find that the ε-independent
transformation z1 = p, z2 = c1 − c2, and z3 = θc̄02(c̄01 +
c̄02)c1/(αc̄

0
1)+θ(c̄01+c̄02)c2/α−p takes the system into normal

SSP form:

ż1 = E0
11z1 + E0

12z2 + E0
13z3,

εż2 = R0z1 + εE0
22z2 +B0

2 ũ(t),

εż3 = εEε31z1 + εEε32z2 + Sεz3 +B0
3 ũ(t),

(24)

where R0 = −α, E0
22 = −δ, B0

2 = 1, S0 = −θ(c̄01 + c̄02),
E0

11 =
αβc̄01

θ(c̄01+c̄02)2
− δ, E0

12 =
βc̄01
c̄01+c̄02

, B0
3 =

θc̄02(c̄01+c̄02)

αc̄01
, and

E0
13 =

αβc̄01
θ(c̄01+c̄02)2

. Using ζ̄(ū, 0) computed in (23), we can
prove that for any positive rate constants α, β, θ, δ and input
ū, we have E0

11 < 0 and E0
12 > 0. Hence, independent of

exact parameter values, H0
1 (s) = −R0(sI − E0

11)−1E0
12 =

αE0
12/(s− E0

11) is SPR and Assumption 2 can be verified.
By (12)-(13), the reduced system of (24) is

ẋ1 = E0
11x1 + E0

12x2 +B0
1rũ(t), (25)

ẋ2 = [ũ(t)− αx1]/ε− δx2, x3 = −(S0)−1B3ũ(t),

where B0
1r = βc̄02/(c̄

0
1 + c̄02)2. By Theorem 1, given ũ(t) ∈

L∞, we have ‖zi − xi‖a = O(
√
ε) for i = 1, 3. In Fig.

3A-B, for a fixed ε = 0.01, we demonstrate the closeness
of zi in the full system (24) and xi in the reduced system
(25) when they are subject to the same band-limited white
noise input ũ(t) (i = 1, 3). In Fig. 3C-D, we show that the
approximation errors |e1| and |e3| decrease with ε.

Since z1 = p is the concentration of the regulated
protein, we treat z1 (x1) as the output of the full (reduced)
system. The reduced system (25) is a high-gain negative
feedback interconnection of two SPR systems and track-
ing performance of such systems has been evaluated in
[15]: ‖x1 − ũ(t)/α‖a = O(

√
ε). Therefore, by triangle

inequality, tracking performance of the full system must
satisfy ‖z1 − ũ(t)/α‖a = O(

√
ε). We thus conclude that

independent of the exact rate constants, the linearized FSF
in Fig. 1A can track a time-varying input with arbitrarily
small error (O(

√
ε)) by increasing all controller reaction rates

(decreasing ε).

VI. CONCLUSIONS

In this paper, we study a class of linear SSP problems
arising from the linearization of FSFs. We have shown
that, under certain conditions, such an SSP system can
be approximated by an ε-dependent reduced-order system,
which is a high-gain feedback interconnection of two SPR
systems. This result allows us to analytically establish the
tracking performance of linearized FSFs. Our future work
will focus on reducing the conservativeness of these results
in a few directions including, but not limited to, providing
an approximation error bound for the pseudo-fast variable
(z2) and computing the error convergence rate. To study the
nonlinear FSF model in (2), we also plan to extend our results
to nonlinear SSP systems.
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Fig. 3. (A-B): Fast and slow variables in the full and reduced systems
with ε = 0.01. (C-D) The approximation error of z1 and z3 decreases with
ε. Simulation parameters: α = θ = δ = ū = 1.
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