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Abstract— In this paper, we consider the safety control
problem for hybrid systems with hidden modes. In particu-
lar, we propose an approach to translate the control problem
with imperfect mode information into an equivalent problem
with perfect mode information. This approach is based on
the notion of non-deterministic discrete information state as
employed in the literature of games of imperfect information.
We show that the safety control problems with imperfect
information and perfect information are equivalent to each
other under suitable detectability assumptions.

I. Introduction

Most of the work on safety control for hybrid systems
has been focusing on the control of systems in which
full state information is available [15], [10]. However, in
several cases of practical interest the state is not available
to the controller because of sensor or communication
limitations [5], [2], [3], [17]. In this paper, we propose
an approach to solve this problem in the case when the
continuous state of the system is measured, while the
discrete state is not measured. Furthermore, the system
is subject to continuous and discrete disturbance inputs
while only a continuous control input is available. This
problem is found in a number of scenarios, including
intent-based conflict detection and avoidance for aircrafts
[14], robotic games with imperfect information [5], and
semi-autonomous cooperative active safety systems to
prevent vehicle collisions [16].

The safety control problem for hybrid systems with
hidden modes can be viewed as a game of imperfect
information between the control and the disturbance. A
common approach to solving games of imperfect informa-
tion is to translate the problem to an equivalent one with
perfect state information [11]. In particular, [17] tackles
the control of hybrid automata with hidden modes by
solving an equivalent control problem with perfect state
information. This new control problem was addressed by
computing a capture set dependent on the mode estimate
and by then designing a dynamic feedback map that
maintains the flow outside this capture set. However,
the conditions for the equivalence between the solved
control problem and the original one with imperfect state
information imposed serious restrictions on the structure
of the mode estimator. In this paper, we show that this
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equivalence can be proved under considerably less restric-
tive assumptions.

Related Work. There is a large body of literature on
the safety control of hybrid automata assuming perfect
state information (see, for example, [15], [10]). The so-
lution approach for general classes of hybrid automata is
based on the calculation of the backward reachable set or
the uncontrollable predecessor of a bad set [8]. This set
comprises all states that lead to the bad set independently
of the input choice. Here, we call this set “the capture
set”. A feedback controller is then constructed that keeps
the system state out of the capture set.

The safety control problem in the case when the set of
observations is a partition of the state space was discussed
by [13]. The problem was first transformed into a game
of perfect information and a controller with memory was
derived. The proposed algorithm can deal with a system
with finite number of states. It excludes important classes
of systems such as timed and hybrid automata. The safety
control problem with imperfect state measurement for
discrete and hybrid systems was discussed by [19]. A
solution to the control problem for rectangular hybrid
automata that admit a finite-state abstraction was pre-
sented. Dynamic feedback in a special class of hybrid
systems with imperfect discrete state information was
discussed in [2]. Dynamic control of block triangular order
preserving hybrid automata under imperfect continuous
state information was considered in [3] for discrete time
systems and in [4] for continuous time systems.

This paper is organized as follows. Section II intro-
duces the hybrid automaton model. In Section III, the con-
trol problem with imperfect state information is defined
and an alternative problem with perfect state information
is proposed. Section IV shows the equivalence between
the two problems. Section V illustrates the basic concepts
on an application example.

II. The System Model and Information Structure

Consider the hybrid automaton given by the tuple
H = (Q, X,U,∆,Σ, Inv,R, f ), in which Q is a finite set
of modes,X is a vector space,U is a continuous set of
control inputs,∆ is a continuous set of disturbances,Σ is
a finite set of disturbance events,Inv is a discrete set of
silent events withΣ ∩ Inv = ∅, R : Q × Σ → Q is the
discrete state update map,f : X × Q × U × ∆ → X is the
vector field, which is allowed to be discontinuous in the



first argument to model autonomous discrete transitions.
Let τ̃ =

⋃N
i=0[τi, τ

′
i)] be a hybrid time trajectory such that

σ(τ′i ) ∈ Σ andσ(t) ∈ Inv for t ∈ [τi, τ
′
i ) for all i such that

τi < τ
′
i . The “)]” parenthesis denotes that the last interval

(if N < ∞) may be open or closed. We representH by
the following equations

q(τi+1) = R(q(τ′i), σ(τ′i)), σ(τ′i ) ∈ Σ (1)

ẋ(t) = f (x(t), q(t), u(t), d(t)), d(t) ∈ ∆, σ(t) ∈ Inv,

in which τi for i ∈ {0, ...,N} are the times at which a
discrete transition takes place and are such thatτi ≤ τ

′
i =

τi+1, q(τi+1) denotes the value ofq after the ith transition,
q(t) := q(supτi≤tτi), t ∈ τ̃ andσ(t) ∈ Inv, x(0) = x0 ∈ X,
q(τ0) = q0 ∈ Q. We assume without loss of generality that
τ0 = 0. In this model, multiple discrete transitions can
occur at the same time as we can haveτi = τi+1 = ... = τi+p

for any arbitraryp ≤ N.
The signalq(t) is a piece-wise continuous signal of time

with the property thatq(t) = limδ→0+q(t + δ) ∀t ≥ 0 but
limδ→0+q(t−δ) , q(t) if t = τi for somei. Basically, at the
transition timet, q(t) takes the value established by the last
transition occurring at timet and it maintains this value
until the next transition. Since discrete transitions change
only the discrete state, we have thatx(τi+1) = x(τ′i) for all
i. For convenience, we take the setInv to be a singleton,
denotedǫ. This model is a special case of the general
hybrid automaton model in standard references [12], in
which there is no continuous state reset and no discrete
control inputs. It may be noticed here that although the
jump predicate is missing, the vector field is allowed to
be discontinuous, which can model switches in vector
field resulting from autonomous discrete transitions. An
example is provided in Section V.

We denote by ˜τt the hybrid time trajectory up to time
t for t ∈ τ̃, that is, letting Nt := sup{i|τ′i ≤ t} we
have τ̃t =

⋃Nt

i=0[τi, τ
′
i ]
⋃

[τNt+1, t], in which τNt+1 = t if
there are discrete transitions at timet. We denote by
σ̃t : τ̃t → Σ the discrete disturbance input signal up to
time t. It forces discrete transitions at the timesτ′i and
it keeps a constant value inInv in between transitions
times, that is, fort ∈ [τi, τ

′
i) for τi < τ

′
i . We denote

by ũt : [0, t) → U the piecewise continuous control
input signal up to timet, and by d̃t : [0, t) → ∆

the piecewise continuous disturbance input signal up to
time t. Given these input signals and initial conditions
(q0, x0) ∈ Q × X, the discrete and continuous trajectories
at any timeτ ≤ t are denoted byφq(τ, q0, σ̃τ) := q(τ) and
φx(τ, (x0, q0), ũτ, d̃τ, σ̃τ), respectively. Note that according
to the definition ofq(t), we have thatφq(0, q0, σ̃0) = q0 if
and only if τ0 < τ1.

We defineφx(0, (x0, q0), ũ0, d̃0, σ̃0) := x0. The contin-
uous trajectoryx(τ) := φx(τ, (x0, q0), ũτ, d̃τ, σ̃τ) satisfies
ẋ(τ) = f (x(τ), φq(τ, q0, σ̃τ), u(τ), d(τ)) ∀τ ≤ t. For an
initial set of modes ¯q ⊂ Q, we denote the set of modes

reachable from q̄ underR asR(q̄) and it is defined as

R(q̄) :=
⋃

q0∈q̄

⋃

t≥0

⋃

σ̃t

φq(t, q0, σ̃t).

Since multiple discrete transitions can occur at one time,
any of these modes can be reached in no time from ¯q.

The trajectories of system (1) satisfy the following
concatenation property. For anyt > 0 andt1, t2 > 0 such
that t1 + t2 = t, we have thatφq(t, q0, σ̃t) = φq(t2, q′0, σ̃

′
t2)

with q′0 = φq(t1, q0, σ̃t1), σ
′(τ) = σ(t1 + τ) ∀ τ ≥ 0 and

φx(t, (q0, x0), ũt, d̃t, σ̃t) = φx(t2, (q′0, x
′
0), ũ′t2, d̃

′
t2, σ̃

′
t2) with

x′0 = φx(t1, (q0, x0), ũt1, d̃t1, σ̃t1), u′(τ) = u(t1 + τ) ∀ τ ≥
0, d′(τ) = d(t1 + τ) ∀ τ ≥ 0. The concatenation property
implies that the value of (q(t), x(t)) can be uniquely
determined by the values ofq and x at some timet1 < t
and by the values of the inputsafter time t1.

A. The non-deterministic discrete information state

In system (1), onlyx is measured whileq is not. At time
t, the availableinformation on the system is given by the
history signal ˜ηt := (ũt, x̃t) with x̃t : [0, t] → X. We also
denoteη(t) := (u(t), x(t)). We defineη0 := (q̄0, x0) with
q̄0 ⊂ Q such thatq0 ∈ q̄0. This is the initial information
that we have on the state of the system. On the basis of
the history up to timet, we define the non-deterministic
discrete information state.

Definition 1: The non-deterministic discrete informa-
tion state at time t is the set ¯q(η̃t) ⊂ Q defined as

q̄(η̃t) :=







































q ∈ Q | ∃ q0 ∈ q̄0, σ̃t s.t. q = φq(t, q0, σ̃t)

and∃ d̃t s.t.

ẋ(τ) = f (x(τ), φq(τ, q0, σ̃τ), u(τ), d(τ))

for all τ < t
















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

.

Basically, q̄(η̃t) is the set of all current modes that are
compatible with the measured continuous state trajectory
and with the discrete state update mapR.

A consequence of this definition is that the set of all
possible modes at timet = 0, that is, ¯q(η0), given thatη0 =

(q̄0, x0) is given byq̄(η0) = R(q̄0) due to the possibility of
multiple instantaneous transitions.

Definition 2: (Weakly detectable modes) We say that
qi ∈ Q is weakly detectable provided for all (u, x) ∈ U ×X
there isd ∈ ∆ such thatf (x, qi, u, d) , f (x, q j, u, d̄) for all
d̄ ∈ ∆ andq j , qi.

A mode is weakly detectable when there is a dis-
turbance action that uniquely reveals the identity of the
mode. Of course, the disturbance may choose to always
play in a range so that the identity of the mode is never
revealed. The property of weak detectability is useful
for characterizing the possible transitions of the non-
deterministic information state. In the sequel, we thus
assume that all the modes inH are weakly detectable:

Assumption 1: All modes inQ are weakly detectable.
If all modes are weakly detectable, there is a disturbance
action at time 0+ which leads to a measurementη(0+)



that is compatible with only one of the modes possible at
time 0. This fact and the fact thatH can have multiple
mode transitions at the same time leads to the following
proposition.

Proposition 1: Let q̄ ∈ 2Q with qi ∈ q̄ and letη0 =

(q̄, x0). Then, Assumption 1 implies that there isη(0+)
such that ¯q(η̃0+) = R(qi).

Because inH multiple mode transitions are possible
at the same time, ifqi ∈ q̄(η̃t), then all modes reachable
from qi can also be in ¯q(η̃t). Furthermore, if the measured
signal x(t) for all t is generated under modeqi, then the
non-deterministic discrete information state is constantfor
all time and equalsR(qi). This is formally stated by the
following proposition.

Proposition 2: Let η0 = (R(qi), x0) and letη̃t = (ũt, x̃t)
with x(t) = φx(t, (x0, qi), ũt, d̃t, ǫ) for all t ≥ 0. Then, for
all d̃t we have ¯q(η̃t) = R(qi) for all t ≥ 0.

Finally, the fact that the trajectories of systemH enjoy
the concatenation property and the definition of ¯q(η̃t)
implies also that ¯q(η̃t) enjoys the concatenation property.

The next section introduces the safety control problem
for the hybrid automaton with hidden modesH.

III. The Control Problem with Imperfect Mode
Information

Let B ⊂ X be a set of continuous states to be avoided.
We consider the problem of designing a dynamic feedback
map that guarantees that the state never entersB for a
suitable set of initial conditions. In particular, letπ : 2Q ×

X → U and denote the closed-loop systemH under such a
map byHπ, whose trajectories are those ofH once we set
u(t) = π(q̄(η̃t), x(t)). We denote thex-trajectory ofHπ by
φπx(t, (x0, q0), d̃t, σ̃t). We thus seek to determine the set of
all initial conditionsη0 such that no feedback mapπ with
initial information q̄(η0) exists that can keep the trajectory
φπx(t, (x0, q0), d̃t, σ̃t) out of B for all time whenq0 ∈ q̄0.
This set is called thecapture set and can be written as

C =
⋃

q̄∈2Q

(

q̄,Cq̄

)

,

in which Cq̄ := {x0 ∈ X | ∀ π, ∃ q0 ∈ q̄, σ̃t, d̃t, t ≥
0 s.t. φπx(t, (x0, q0), d̃t, σ̃t) ∈ B}. The setCq̄ is the set of
all continuous states that enterB independently of the
feedback map when the mode of the system starts in
the set ¯q. This set is also referred to asmode-dependent
capture set. Therefore, we state the problem as follows:

Problem 1: (Control Problem with Imperfect State
Information) Determine the capture setC and the set of
feedback mapsπ such that ifη(0) < C, then (q̄(η(t)), x(t)) <
C for all t ≥ 0.

As a direct consequence of the facts that ¯q(η̃t) enjoys
the concatenation property, that the open loop trajectories
enjoy the concatenation property, and thatπ is a time-
invariant map from 2Q×X to U, the trajectory of the closed
loop systemHπ also enjoys the concatenation property.

An immediate consequence of this fact is that if the
mapπ keeps the trajectory ofHπ outsideB starting from
initial informationη0 = (q̄0, x0), it also keeps the trajectory
of Hπ outside B starting from initial informationη′0 =
(q̄(η̃t1), x(t1)) for all t1 > 0. This is formally stated by the
following proposition.

Proposition 3: Let π be such that withη0 = (q̄0, x0)
we haveφπx(t, (q0, x0), d̃t, σ̃t) < B for all q0 ∈ q̄0, d̃t, σ̃t

and t ≥ 0. Then for all t1 > 0, π is such that withη′0 =
(q̄(η̃t1), x(t1)) we haveφπx(t, (q

′
0, x(t1)), d̃′t , σ̃

′
t) < B for all

q′0 ∈ q̄(η̃t1), d̃
′
t , σ̃

′
t and t ≥ 0.

Note that since ¯q(η0) = R(q̄0), we have thatCq̄ = CR(q̄)

for all modes ¯q ∈ 2Q. This is formally stated in the
following proposition.

Proposition 4: For all q̄ ∈ 2Q, we have thatCq̄ =

CR(q̄).
For systemH, we define theuncontrollable predeces-

sor operator for a fixed modeqi ∈ Q and a setS ⊆ X as
PreH(qi, S ) := {x0 ∈ X | ∀ π, ∃ d̃t s.t. φπx(t, (qi, x0), d̃t, ǫ) ∈
S }. It represents the set of all states that are taken toS
independently of the feedback map whenever the mode is
constant toqi.

A. Transforming the problem to a perfect state informa-
tion control problem

One of the difficulties of solving Problem 1 resides in
the fact that the set ¯q(η̃t) is computed on the basis of the
entire system history up to timet and keeping track of
this growing history is prohibitive. We therefore translate
Problem 1 to an equivalent control problem with perfect
state information as performed in the theory of games with
imperfect information [11].

In order to define a control problem with perfect state
information, we construct adiscrete state estimate. A
discrete state estimate is a time-dependent set, denoted
q̂(t) ∈ 2Q, with the properties that (i) ¯q(η̃t) ⊆ q̂(t) for all
t ≥ 0; (ii) For t2 ≥ t1, we have that ˆq(t2) ⊆ R(q̂(t1)). We
note here that ˆq(t) = Q for t ≥ 0 always satisfies (i) and
(ii), but in general, it is easy to construct an update law for
q̂(t) as we show in Section V. In the case in which in (i)
equality holds for allt, the estimate is saidexact. Define
the new hybrid automaton̂H = (2Q, X,U,∆, Y, Înv, R̂, f ),
in which 2Q is a new set of discrete states,Y is a set
of discrete events,̂Inv is a set of silent events with
Y ∩ Înv = ∅, R̂ : 2Q × Y → 2Q is a discrete state transition
map 1. Let ˜̂τ =

⋃N̂
i=0[τ̂i, τ̂

′
i )] be a hybrid time trajectory

such that ˆτ0 = τ0, y(τ̂′i) ∈ Y and y(t) ∈ Înv for t ∈ [τ̂i, τ̂
′
i)

for all i such that ˆτi < τ̂
′
i . We represent̂H by the following

equations

q̂(τ̂i+1) = R̂(q̂(τ′i ), y(τ̂′i)), y(τ̂′i) ∈ Y (2)
˙̂x(t) ∈ f (x̂(t), q̂(t), u(t), d(t)), d(t) ∈ ∆, y(t) ∈ Înv

1It is important to note here that the discrete state space ofĤ is a
subset of 2Q. Section V provides an illustration of this.



in which we have defined ˆq(t) := q̂(sup̂τi≤tτ̂i) ∀ t ∈ ˜̂τ. The
mapR̂ is such that ˆq(t) is a discrete state estimate, ˆx(0) =
x0 and q̂(τ̂0) = q̄0. This in turn implies that (a)̂R(q̂, y) ⊆
R(q̂) for all y ∈ Y andq̂ ∈ 2Q and that (b) ˆτ′0 = τ̂0 = 0 and
y(τ̂′0) is such thatR̂(q̂(τ̂′0), y(τ̂′0)) := R(q̂(τ̂′0)) = R(q̄0). Fix
anyT > 0, y(t) derives information fromxτ∈[t−T,t] for t > T
about the values of ˙x(τ) for τ < t and uses this information
to determine the current values ofq compatible with such
a derivative (see [5], [1], [6] for details).

We denote by˜̂τt the hybrid time trajectory ofĤ up
to time t for t ∈ ˜̂τ, that is, let N̂t := sup{i|τ̂′i ≤ t},

then ˜̂τt =
⋃N̂t

i=0[τ̂i, τ̂
′
i ]
⋃

[τ̂N̂t+1, t], in which τN̂t+1 = t if
there are discrete transitions at timet. We denote by
ỹt : [0, t] → Y the discrete “disturbance” input signal up
to time t. It forces discrete transitions at the times ˆτ′i and
it keeps a constant value in̂Inv in between transitions
times, that is, fort ∈ [τ̂i, τ̂

′
i) for τ̂i < τ̂

′
i . This signal is a

disturbance for system̂H as it is not a controlled signal
but it is driven by nature’s actions. Given initial conditions
(q̄0, x0) ∈ 2Q×X, the discrete and continuous trajectories of
Ĥ at any timeτ ≤ t are denoted byφq̂(τ, q̄0, ỹτ) := q̂(τ) and
φx̂(τ, (q̄0, x0), ũτ, d̃τ, ỹτ) := x̂(τ), respectively. We define
φx̂(0, (q̄0, x0), ũ0, d̃0, ỹ0) := x0. Any continuous trajectory
x̂(τ) satisfies˙̂x(τ) ∈ f (x̂(τ), φq̂(τ, q̄0, ỹτ), u(τ), d(τ)) ∀ τ ≤ t.
We assume that̂Inv is a singleton and is equal toǫ.

In system (2), the state is known as ˆq(t) is known and
x̂(t) = x(t) is measured. Basically, the ˆx dynamics in (2)
describes the set of dynamics ofx that are compatible with
the current discrete state estimate. Since ˆq(t) is a discrete
state estimate ofq(t), any continuous state trajectory
possible inH is also possible inĤ.

Let π̂ : 2Q × X → U be a feedback map. We denote
the closed loop system̂H by Ĥπ̂, the system in equations
(2), in which we have setu(t) = π̂(q̂(t), x̂(t)). The capture
set for systemĤ is given by

Ĉ :=
⋃

q̄∈2Q

(

q̄, Ĉq̄

)

,

in which Ĉq̄ := {x0 ∈ X | ∀ π̂, ∃ d̃t, ỹt, t ≥

0 s.t. someφπ̂x̂(t, (q̄, x0), d̃t, ỹt) ∈ B}.
For a hybrid time trajectory such that ˆτ′0 = ∞, we have

that y(t) = ǫ for all t ≥ 0. We denote the corresponding
continuous trajectory of̂H by x̂(t) = φx̂(τ, (x0, q̄0), ũτ, d̃τ, ǫ)
and it is such that it satisfieŝ̇x(t) ∈ f (x̂(t), q̄0, u(t), d(t)) for
all t ≥ 0. We thus define for a setS ⊂ X and q̄ ∈ 2Q the
uncontrollable predecessor operator forĤ as Pre(¯q, S ) :=
{x0 ∈ X | ∀ π̂∃ d̃t, t ≥ 0, s.t. someφπ̂x̂(t, (x0, q̄), d̃t, ǫ) ∈ B}.
This set represents the set of all states that are mapped toB
when the mode estimate is constant to ¯q. Whenq̄ = qi ∈ q,
the Pre operator simplifies to Pre(qi, B) = PreH(qi, B).

We now state the new control problem as follows.
Problem 2: (Control Problem with Perfect State Infor-

mation) Determine the capture set̂C and the set of feed-
back maps ˆπ such that ifη(0) < Ĉ, then all (q̂(t), x̂(t)) < Ĉ
for all t ≥ 0.

This is a perfect state information problem as the
hybrid state is known to the controller. This problem
has been solved in [17], in which an algorithm for the
computation of the mode-dependent capture setsĈq̄ was
provided along with termination conditions. We recall this
algorithm here for completeness. Let 2Q = {q̂1, ..., q̂M}, be
the discrete state space of systemĤ and define the tuple
of sets S i ∈ 2X for i ∈ {1, . . . ,M}. We define the map
G : (2X)M → (2X)M as

G(S ) :=


























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(

q̂1,
⋃

{ j|q̂ j∈R̂(q̂1,Y)} S j ∪ B
)
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Pre
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q̂M ,
⋃

{ j|q̂ j∈R̂(q̂M ,Y)} S j ∪ B
)
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






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


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

and consider the following iteration:
Algorithm 1: S 0 := (S 0

1, S 0
2, . . . , S

0
M) := (∅, . . . , ∅),

S 1 = G(S 0)
while S k−1

, S k

S k+1 = G(S k)
end.
In [17], it was shown that if Algorithm 1 terminates, the
fixed point is equal to the tuple of sets (Ĉq̂1, . . . , Ĉq̂M ).
Furthermore, [7] presented a linear complexity algorithm
for computation of the Pre operator for the special case
when the system dynamics are order preserving.

In this paper, we focus on determining conditions under
which Problems 1 and 2 are equivalent. Specifically, we
formalize the equivalence between these two problems
through the following definition.

Definition 3: (Equivalence) We say that Problem 1
and Problem 2 are equivalent providedCq̄ = Ĉq̄ for all
q̄ ∈ 2Q.

The next section is devoted to proving the equivalence
between Problems 1 and 2.

IV. Showing the Equivalence

We show the equivalence between Problem 1 and
Problem 2 by first showing thatCq̄ ⊆ Ĉq̄ and by then
showing the reverse inclusionCq̄ ⊇ Ĉq̄.

Lemma 1: For all q̄ ∈ 2Q, we have thatCq̄ ⊆ Ĉq̄.
Proof: Proceeding by contradiction argument, as-

sume that x0 ∈ Cq̄ but x0 < Ĉq̄. Since x0 ∈ Cq̄,
for all feedback mapsπ with initial non-deterministic
information state ¯q(η0) = R(q̄), there isq0 ∈ q̄, σ̃t, d̃t, and
t ≥ 0 such thatφπx(t, (q0, x0), d̃t, σ̃t) ∈ B. However, because
x0 < Ĉq̄, there is a feedback map ˆπ with q̂(0) = R(q̄) such
that for all d̃t, ỹt, t ≥ 0 all flowsφπ̂x̂(t, (q̄, x0), d̃t, ỹt) < B. In
particular, this is true for ˜y∗t such thaty∗(t) = ǫ for all t > 0,
which implies that ˆq(t) = q̂(0) = R(q̄) for all t ≥ 0. Thus,
there is a simple feedback mapπ′(x) := π̂(q̂(0), x) such
that for all d̃t and t ≥ 0 all flows φπ̂

′

x̂ (t, (q̄, x0), d̃t, ỹ∗t ) < B
for all t ≥ 0. A trajectory ˆx(t) = φπ̂

′

x̂ (t, (q̄, x0), d̃t, ỹ∗t ) is in
turn by definition any trajectory satisfying

˙̂x(t) ∈ f (x̂(t),R(q̄), π′(x̂(t)), d(t)). (3)



Similarly, x(t) = φπ
′

x (t, (q0, x0), d̃t, σ̃t) with q0 ∈ q̄
is any trajectory satisfying ˙x(t) = f (x(t), φq(t, q0, σ̃t),
π′(x(t)), d(t)). Sinceq0 ∈ q̄, it follows that any suchx(t)
satisfies also (3) for all ˜σt andd̃t. As a consequence,π′ is
such thatφπ

′

x (t, (q0, x0), d̃t, σ̃t) < B for all t ≥ 0, all d̃t, and
all σ̃t. This contradicts thatx0 ∈ Cq̄. Therefore, it must be
that x0 ∈ Ĉq̄.

We next focus on showing that̂Cq̄ ⊆ Cq̄. This is
proven by first showing that̂Cq̄ ⊆

⋃

q∈R(q̄) Pre(q, B) and
by then showing that

⋃

q∈R(q̄) Pre(q, B) ⊆ Cq̄. In order to
show the first inclusion, we need the following structural
assumption.

Assumption 2: For all q̄ ∈ 2Q we have that Pre(¯q, B) =
⋃

qi∈q̄ Pre(qi, B).
This assumption is satisfied if anyx that is reachable

by a trajectory of systemĤ when the mode is equal
to q̂ = {q1, ..., qn} is also reachable by a trajectory of
Ĥ when the mode is equal to ˆq = {qi} for at least one
i ∈ {1, ..., n}. This assumption can be in general checked
computationally. In the special case in which the dynamics
of x for q ∈ q̄ and d ∈ ∆ are order preserving, the
assumption is automatically satisfied (see Proposition 5
in the Appendix). This assumption enables the proof of
the following result.

Lemma 2: If Algorithm 1 terminates, under Assump-
tions 1 and 2 we have that̂Cq̄ ⊆

⋃

q∈R(q̄) Pre(q, B).
Proof: If Algorithm 1 termi-

nates in n steps, we can write Ĉq̄ =

Pre
(

q̄,
⋃

q̂ j1∈R̂(q̄,Y) Pre
(

q̂ j1,
⋃

q̂ j2∈R̂(q̂ j1 ,Y) Pre
(

q̂ j2, ...
⋃

q̂ jn−1∈R̂(q̂ jn−2 ,Y) Pre(q̂ jn−1, B)...
)))

. Having q̂ j1 ∈ R̂(q̄,Y)

implies (by the definition of R̂) that q̂ j1 ⊆ R(q̄).
Since we also have that ˆq jk ⊆ R(q̂ jk−1) for
k ∈ {2, ..., n − 1}, it follows that q̂ jk ⊆ R(q̄). From
the properties of the Pre operator (see [17]), we
have that Pre( ˆq jn−1, B) ⊆ Pre(R(q̄), B) and thus that
Ĉq̄ ⊆ Pre

(

q̄,
⋃

q̂ j1∈R̂(q̄,Y) Pre
(

q̂ j1,
⋃

q̂ j2∈R̂(q̂ j1 ,Y) Pre
(

q̂ j2, ...,
⋃

q̂ jn−2∈R̂(q̂ jn−3 ,Y) Pre
(

q̂ jn−2(Pre(R(q̄), B))
)

...
)))

. In this
expression, we in turn have that

⋃

q̂ jn−2∈R̂(q̂ jn−3 ,Y) Pre(q̂ jn−2,

(Pre(R(q̄), B)) ⊆ Pre(R(q̄), (Pre(R(q̄), B))). By continuing
substituting ˆqk with R(q̄), we finally obtain that
Ĉq̄ ⊆ Pre(R(q̄),Pre(R(q̄), ...,Pre(R(q̄), B)...)) , which by
the properties of the Pre operator is equal to Pre(R(q̄), B).
By Assumption 2, Pre(R(q̄), B) =

⋃

q∈R(q̄) Pre(q, B),
leading toĈq̄ ⊆

⋃

q∈R(q̄) Pre(q, B).
The next two lemmas are intermediate steps needed to

show that
⋃

q∈R(q̄) Pre(q, B) ⊆ Cq̄.
Lemma 3: For all qi ∈ Q, we have that Pre(qi, B) ⊆

CR(qi).

Proof: Assume by contradiction argument thatx0 ∈

Pre(qi, B) but x0 < CR(qi). By the definition of Pre, it
follows that for all mapsπ(qi, x) there is d̃t such that
φπx(t, (qi, x0), d̃t, ǫ) ∈ B. Since the first argument ofπ is
constant toqi, we can define the new map ¯π(x) := π(qi, x).
Then x0 ∈ Pre(qi, B) implies that for all feedback maps

π̄(x) there isd̃t such thatφπ̄x(t, (qi, x0), d̃t, ǫ) ∈ B. If x0 <

CR(qi), there is a feedback mapπ(q̄(η̃t), x) such that for all
q0 ∈ R(qi), σ̃t, d̃t, it guarantees thatφπx(t, (q0, x0), d̃t, σ̃t) <
B for all t ≥ 0. In particular, such a feedback map
guarantees thatφπx(t, (q0, x0), d̃t, σ̃t) < B for q0 = qi and
σ̃t = ǫ. That is,φπx(t, (qi, x0), d̃t, ǫ) < B for all t ≥ 0. By
Proposition 2, we have thatφπx(t, (qi, x0), d̃t, ǫ) for all d̃t is
such that ¯q(η̃t) = R(qi) for all t ≥ 0. As a consequence,
the mapπ(q̄(ηt), x) that guaranteesφπx(t, (qi, x0), d̃t, ǫ) < B
for all t ≥ 0 is just a simple map fromx as q̄(ηt) is
constant for all time. That is, we can define the new
map π̄(x) := π(R(qi), x) so that for all d̃t, it guarantees
that φπ̄x(t, (qi, x0), d̃t, ǫ) < B for all t. This contradicts the
fact that x0 ∈ Pre(qi, B). Hence, if x0 ∈ Pre(qi, B) also
x0 ∈ CR(qi), leading to the desired result.

This result is non-trivial because the feedback map
involved in the definition of Pre(qi, B) is a simple feedback
map from x, while the one involved in the definition of
CR(qi) has more information than onlyx, which derives
from the current non-deterministic discrete information
state.

Lemma 4: Let qi ∈ q̄ ∈ 2Q. Then,CR(qi) ⊆ Cq̄.
Proof: Let x0 ∈ CR(qi), then for all feedback mapsπ

with initial informationq̄(η0) = R(qi), there areq0 ∈ R(qi),
σ̃t, d̃t, and t ≥ 0 such thatφπx(t, (q0, x0), d̃t, σ̃t) ∈ B.
Assume thatx0 < Cq̄. SinceCq̄ = CR(q̄) by Proposition
4, there is a feedback mapπ∗ with initial information
q̄(η0) = R(q̄) such that for allq0 ∈ R(q̄), d̃t, σ̃t, t ≥ 0
φπ
∗

x (t, (q0, x0), d̃t, σ̃t) < B. In particular, this must be true
for all q0 ∈ R(qi) ⊆ R(q̄) and for d̃t such thatd(0) causes
η̃0+ with q̄(η̃0+ ) = R(qi), which exists from Proposition 1.
Since x(0+) = x(0) = x0 and q̄(η̃0+ ) = R(qi), by Proposi-
tion 3, feedback mapπ∗ with η′0 = (x0,R(qi)) is such that
for all q0 ∈ R(qi), σ̃t, d̃t, t ≥ 0, φπ

∗

x (t, (q0, x0), d̃t, σ̃t) < B.
This, however, contradicts thatx0 ∈ CR(qi). Thus if x0 ∈

CR(qi) we must also have thatx0 ∈ Cq̄, leading to the
desired result.
Note that ifR(qi) ⊂ q̄, this result is trivial. However, in
generalR(qi) ⊂ q̄ is not true. Nevertheless, because of
Proposition 1, we can have an instantaneous transition
form q̄ to R(qi), which leads to havingCR(qi) ⊆ Cq̄.

Lemma 5: For all q̄ ∈ 2Q, we have that
⋃

q∈R(q̄) Pre(q, B) ⊆ Cq̄.
Proof: By Lemma 4, for all qi ∈ q̄ we

have that CR(qi) ⊆ Cq̄. Therefore, we have that
⋃

qi∈q̄ CR(qi) ⊆ Cq̄. Employing Lemma 4 again, we ob-
tain that for all q′i ∈ R(qi) we have thatCR(q′i ) ⊆

CR(qi), so that
⋃

q′i∈R(qi) CR(q′i ) ⊆ CR(qi). As a conse-
quence, we have that

⋃

qi∈q̄
⋃

q′i∈R(qi) CR(q′i ) ⊆ Cq̄, in which
⋃

qi∈q̄
⋃

q′i∈R(qi) CR(q′i ) =
⋃

q∈R(q̄) CR(q). Employing Lemma
3, we obtain that

⋃

q∈R(q̄) Pre(q, B) ⊆
⋃

q∈R(q̄) CR(q), leading
to the desired result.

Theorem 1: If Algorithm 1 terminates, under As-
sumptions 1 and 2 Problem 1 and Problem 2 are equiva-
lent.



Fig. 1. Two-vehicle Conflict Scenario. Vehicle 1 (autonomous)
is equipped with a cooperative active safety system and commu-
nicates with the infrastructure via wireless. Vehicle 2 (human-
driven) is not equipped and does not communicate with the
infrastructure. A collision occurs when more than one vehicle
occupies the conflict area at one time. (Right) Diagram repre-
senting mapR and diagram representing mapR̂.

Proof: Lemma 2 and Lemma 5 prove that for all
q̄ ∈ 2Q we have thatĈq̄ ⊆ Cq̄. The reverse inclusion is
proven by Lemma 1.

V. Application Example

As an example, consider the conflict resolution prob-
lem between two vehicles as depicted in Figure 1. The
autonomous vehicle communicates with the infrastructure
and has access to position and speed information about
all vehicles in the intersection. The human-driven vehicle
does not communicate. In order to reduce the uncertainty
on its behavior, we consider a human driving model with
three modes: accelerationa, coastingc, and brakingb.
The system can start in any of these modes and the
human driven vehicle can transit from acceleration, to
coasting, to braking, to model the fact that as it approaches
the intersection, it may decide that it is safe to slow
down [9]. This scenario can be modeled by the system
H = (Q, X,U,∆,Σ, Inv,R, f ), in which Q = {a, c, b},
U = [uL, uH], ∆ = [−d̄, d̄], Σ = {σ∗}, andR : Q×Σ→ Q is
represented in the top right diagram of Figure 1. Denoting
x = (x1, x2, x3, x4) with x1 = p1, x2 = v1, x3 = p2, x4 = v2,
the unsafe set is given byB = {x | (x1, x3) ∈ [L1,U1] ×
[L2,U2]}. The vector fieldf is piece-wise continuous and
given by f (x, q, u, d) = ( f1(x, u), f2(x, q, d)), with

f1(x, u) =



















(x2, α), if x2 ∈ (vmin, vmax)
(x2, 0), if x2 ≤ vmin andα < 0

or x2 ≥ vmax andα > 0,
(4)

f2(x, q, d) =



















(x4, βq + d), if x4 ∈ (vmin, vmax)
(x4, 0), if x4 ≤ vmin andβq + d < 0

or x4 ≥ vmax andβq + d > 0,
(5)

in which α = k1u−k2x2
2−k3 [18]. It describes the vehicles

longitudinal dynamics along their paths. Here, we assume
that βb < 0, βc = 0, andβa > 0, with d̄ < |βq| < 2d̄ for
q ∈ {a, b}. This guarantees that Assumption 1 is satisfied
for x2 and x4 both in the open interval (vmin, vmax). This
also implies that there is a confusion between modesb
and c and between modesc and a. The estimatorĤ, in
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Fig. 2. In each of the plots (a)–(e), the red box represents
[L1,U1] × [L2,U2]. Since the sets Pre(ˆq, B)H and Pre(ˆq, B)L are
four dimensional, we plot slices of these sets in the (x1, x3)
position plane corresponding to the current speed values (x2, x4).
The black solid lines delimit the slice of the set Pre(ˆq, B)H in
position plane for the current speeds values (x2, x4). Similarly,
the green dashed lines delimit the slice of the set Pre(ˆq, B)L in
position plane for the same current speeds values (x2, x4). The
intersection of these two slices delimits the slice of the current
mode dependent capture setĈq̂ for the same current speeds
values (x2, x4). The red circle denotes the current positionx1, x3,
while the blue trace represents the projection in the position
plane of the continuous trajectory ofH. Plot (a) shows the
initial configuration in the position plane. Here, the current mode
estimate is ˆq = {a, b, c}. Plot (b) shows the mode estimate
switching toq̂ = {c, b}. Plot (c) shows the time at which the mode
estimate becomes ˆq = {b}, so that the current mode is locked.
Plot (d) shows when the continuous state hits the boundary of
the current mode-dependent capture set and thus safe control is
applied.

which we denote ˆq1 = {a, b, c}, q̂2 = {c, b}, q̂3 = {b}, and
q̂(0) = q̂1, is uniquely defined once the setY and map
R̂ are defined. For this sake, consider the estimateβ̂(t) =
1
T

∫ t

t−T
v̇2(τ)dτ, t ≥ T. For each possible value ofq(t), we

compute the interval in whicĥβ(t) must lie. Thus, we have
the following. Forq(t) = a, we have that|β̂(t)−βa| ≤ βa; for
q(t) = c, we have that̂β(t) ∈ [−d̄, βa + d̄]; and for q(t) = b,
we have thatβ̂(t) ∈ [−|βb| − d̄, βa + d̄]. Given this , we
have that ifβ̂(t) ∈ [−|βb|− d̄,−d̄] then necessarilyq(t) = b.
Similarly, if β̂(t) ∈ [−d̄, 0] thena is not currently possible
and thus we must necessarily have thatq(t) ∈ {c, b}. As
a consequence, we defineY = {ycb, yb, ǫ} and define for
t > T

y(t) =



















ycb if β̂(t) ∈ [−d̄, 0] andq̂(t−) = q̂1

yb if β̂(t) ∈ [−|βb| − d̄,−d̄] and q̂(t−) ∈ {q̂1, q̂2}

ǫ otherwise.

Thus, R̂ is represented in the bottom right diagram of
Figure 1. The properties of a mode estimator are satisfied.
One can easily verify that Algorithm 1 terminates and
that Ĉq̂1 = Pre(q̂1, B), Ĉq̂2 = Pre(q̂2, B), Ĉq̂3 = Pre(q̂3, B).
In this case, the set of discrete modes on whichĤ evolves
is a strict subset of 2Q given by Q̂ := {q̂1, q̂2, q̂3}. By
virtue of Proposition 5, Assumption 2 is satisfied for all
q̄ ∈ Q̂. The sets Pre( ˆq1, B),Pre(q̂2, B), and Pre(ˆq3, B) can
be easily calculated with a linear complexity discrete time



algorithm as in each mode the dynamics are given by the
parallel composition of two order preserving systems and
B is an interval [7]. In particular, these sets are given as
Pre(q̂, B) = Pre(q̂, B)L ∩ Pre(q̂, B)H, in which Pre(ˆq, B)L =

{x ∈ X | ∃ t, d̃t s.t. some φx̂(t, (x, q̂), d̃t, uL, ǫ) ∈
B} and Pre(ˆq, B)H = {x ∈

X | ∃ t, d̃t s.t. some φx̂(t, (x, q̂), d̃t, uH, ǫ) ∈ B} (see
[17], [4] for more details on these computational
techniques). The map ˆπ(q̂, x) for every mode estimate
q̂ is active only whenx is on the boundary ofĈq̂ and
in such a case it makes the continuous state slide on
the boundary ofĈq̂ [17], [4]. Simulation results for the
closed loop systemHπ are shown in Figure 2.

VI. Conclusions

In this paper, we have considered the safety control
problem for hybrid systems with hidden modes. In ac-
cordance to what is performed in games of imperfect
information [13], [19], [11], we translated the imperfect
information control problem to a perfect information
control problem. This new control problem with perfect
information has been solved in our earlier work [17]. In
this paper, we have focused on proving the equivalence be-
tween the two control problems under a weak detectability
assumption and an assumption on the structure of the
uncontrollable predecessor operator. In our future work,
we will incorporate discrete control inputs and continuous
state uncertainty into the model.
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Appendix

Proposition 5: Consider systemH and letX = X1×X2

with x1 = (x1,1, ..., x1,n) ∈ X1 and x2 = (x2,1, ..., x2,m) ∈ X2.
Let q̄ ∈ 2Q and assume that
(i) there aref1 : X1 × U → X1, and f2 : X2 × Q × D →

X2 such thatf (x, q, u, d) = ( f1(x1, u), f2(x2, q, d)) for
x1 ∈ X1 and x2 ∈ X2;

(ii) there is f̄2 : X2 × R → X2 such that we have that
{ f2(x2, q̄, d) | d ∈ D} = { f̄2(x2, d̄) | d̄ ∈ D(q̄)} for a
suitable setD(q̄) ⊂ R and the system ˙x2 = f̄2(x2, d̄)
with d̄ ∈ D(q̄) is an order preserving system (see [4]
for definition of order preserving system);

(iii) D(q̄) =
⋃

q∈q̄ D(q);
(iv) B = {(x1, x2) | (x1,1, x2,1) ∈ [L1,U1] × [L2,U2]}.
Then, Pre(¯q, B) =

⋃

q∈q̄ Pre(q, B).
Proof: It is enough to show that if ( ¯x1, x̄2) ∈

Pre(q̄, B), then there isq ∈ q̄ such that ( ¯x1, x̄2) ∈ Pre(q, B).
If ( x̄1, x̄2) ∈ Pre(q̄, B), then for allπ there isd̄ ∈ S(D(q̄))
and t ≥ 0 such that φπx1,1

(t, x̄1) ∈ [L1,U1] and
φx2,1(t, x̄2, d̄) ∈ [L2,U2] (by (i) and (iv)). Since
D(q̄) = [dL(q̄), dH(q̄)] and the flow preserves the
ordering with respect to the input by (ii), we have that
y := φx2,1(t, x̄2, d̄) ∈ [φx2,1(t, x̄2, dL(q̄)), φx2,1(t, x̄2, dH(q̄))].
Since D(q̄) =

⋃

q∈q̄ D(q) by (iii) we also have
that D(q̄) =

⋃

q∈q̄[dL(q), dH(q)]. Therefore, we
have that [φx2,1(t, x̄2, dL(q̄)), φx2,1(t, x̄2, dH(q̄))] =
⋃

q∈q̄[φx2,1(t, x̄2, dL(q)), φx2,1(t, x̄2, dH(q))]. As a
consequence, there isq ∈ q̄ such that y ∈

[φx2,1(t, x̄2, dL(q)), φx2,1(t, x̄2, dH(q))]. By the continuity
of the flow with respect to the input signal, we have
that for all y ∈ [φx2,1(t, x̄2, dL(q)), φx2,1(t, x̄2, dH(q))],
there is an input signal̄d′ ∈ S([dL(q), dH(q)]) such
that φx2,1(t, x̄2, d̄′) = y. Thus, we can conclude that
for all π there is q ∈ q̄ and d̄′ ∈ S(D(q)) such that
φπx1,1

(t, x̄1) ∈ [L1,U1] andφx2,1(t, x̄2, d̄′) ∈ [L2,U2]. This, in
turn, implies that ( ¯x1, x̄2) ∈ Pre(q, B).


