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Abstract— In this paper, we consider the safety control equivalence can be proved under considerably less restric-
problem for hybrid systems with hidden modes. In particu-  tjve assumptions.
lar, we propose an approach to translate the control problem Related Work. There is a large body of literature on

with imperfect mode information into an equivalent problem . .
with perfect mode information. This approach is based on the safety control of hybrid automata assuming perfect

the notion of non-deterministic discrete information stae as ~ State information (see, for example, [15], [10]). The so-
employed in the literature of games of imperfect informatian.  lution approach for general classes of hybrid automata is
We show that the safety control problems with imperfect pased on the calculation of the backward reachable set or
information and perfect information are equivalent to each the uncontrollable predecessor of a bad set [8]. This set
other under suitable detectability assumptions. . L
comprises all states that lead to the bad set independently
|. INTRODUCTION of the input choice. Here, we call this set “the capture

Most of the work on safety control for hybrid systemsset”. A feedback controller is then constructed that keeps
has been focusing on the control of systems in whicke System state out of the capture set.
full state information is available [15], [10]. However, in  The safety control problem in the case when the set of
several cases of practical interest the state is not availatpbservations is a partition of the state space was discussed
to the controller because of sensor or communicatioBy [13]. The problem was first transformed into a game
limitations [5], [2], [3], [17]. In this paper, we propose of perfect information and a controller with memory was
an approach to solve this problem in the case when titerived. The proposed algorithm can deal with a system
continuous state of the system is measured, while thdith finite number of states. It excludes important classes
discrete state is not measured. Furthermore, the systé&hsystems such as timed and hybrid automata. The safety
is subject to continuous and discrete disturbance inpug®ntrol problem with imperfect state measurement for
while only a continuous control input is available. Thisdiscrete and hybrid systems was discussed by [19]. A
problem is found in a number of scenarios, includingolution to the control problem for rectangular hybrid
intent-based conflict detection and avoidance for airsraffutomata that admit a finite-state abstraction was pre-
[14], robotic games with imperfect information [5], andsented. Dynamic feedback in a special class of hybrid
semi-autonomous cooperative active safety systems $yStems with imperfect discrete state information was
prevent vehicle collisions [16]. discussed in [2]. Dynamic control of block triangular order

The safety control problem for hybrid systems withpreserving hybrid automata under imperfect continuous
hidden modes can be viewed as a game of imperfegtate information was considered in [3] for discrete time
information between the control and the disturbance. Aystems and in [4] for continuous time systems.
common approach to solving games of imperfect informa- This paper is organized as follows. Section Il intro-
tion is to translate the problem to an equivalent one witHuces the hybrid automaton model. In Section Ill, the con-
perfect state information [11]. In particular, [17] tackle trol problem with imperfect state information is defined
the control of hybrid automata with hidden modes byand an alternative problem with perfect state information
solving an equivalent control problem with perfect statdS proposed. Section IV shows the equivalence between
information. This new control problem was addressed b{fie two problems. Section V illustrates the basic concepts
computing a capture set dependent on the mode estim&i@ an application example.
and by then designing a dynamic feedback map that
maintains the flow outside this capture set. However,
the conditions for the equivalence between the solved Consider the hybrid automaton given by the tuple
control problem and the original one with imperfect statd? = (Q. X, U, A, X, Inv, R, f), in which Q is a finite set
information imposed serious restrictions on the structur@f modes X is a vector spacel) is a continuous set of

of the mode estimator. In this paper, we show that thigontrol inputs,A is a continuous set of disturbancésis
a finite set of disturbance eventsy is a discrete set of
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first argument to model autonomous discrete transitionseachable from g underR asR(q) and it is defined as
Let7 = Ui’io[ri,ri')] be a hybrid time trajectory such that _ N

o(r]) e Z ando(t) € Inv for t € [, 7]) for all i such that R(@) = U U U¢q(t’ Ao, 71)-
7i < 7{. The *)]” parenthesis denotes that the last interval
(if N < o) may be open or closed. We represéhtoy ~ Since multiple discrete transitions can occur at one time,

go€q t>0 G

the following equations any of these modes can be reached in no time fgpom
The trajectories of system (1) satisfy the following
d(riz1) = R(A(7]), 0 (7)), (7)) € X (1)  concatenation property. For anyt > 0 andty, t, > 0 such
Xt = f(x(®),qt),u),d), dt) € A, ot) e Inv, thatty +t =t, we have thaq(t, qo, o) = ¢q(t2. G, 77,)

with dy = ¢q(t1,90, 1), 0'(r) = o(ta+7) ¥ 7> 0 and
in which 7; for i € {0,..,N} are the times at which a ¢,(t, (g, Xo), U, o, G¢) = ¢x(t2, (0, X0), U, O, G7,) with
discrete transition takes place and are suchthatr{ =  x\ = ¢,(t1, (o, Xo), U, O, 61,), U () = ulta +7) V 7 >
7i+1, q(7i+1) denotes the value af after the ith transition, 0, d’(r) = d(ty + 7) ¥V = > 0. The concatenation property
q(t) := a(sup,47i), te 7 ando(t) € Inv, x(0) = X0 € X, implies that the value of o(t), x(t)) can be uniquely
(7o) = o € Q. We assume without loss of generality thatdetermined by the values of and x at some timet; < t
7o = 0. In this model, multiple discrete transitions canand by the values of the inpusdter time t;.
occur at the same time as we can have 7,1 = ... = Tijp o _ )
for any arbitraryp < N. A. The non-deterministic discrete information state
The signal(t) is a piece-wise continuous signal of time  In system (1), only is measured whilg is not. At time
with the property thag(t) = lims_o-q(t + 6) Yt > 0 but t, the availableénformation on the system is given by the
lims_o-q(t—0) # q(t) if t = 7; for somei. Basically, at the history signalr; = (T, %) with % : [0,t] — X. We also
transition timet, q(t) takes the value established by the lastlenoten(t) := (u(t), x(t)). We defineno := (qo, Xo) with
transition occurring at timeé and it maintains this value qo c Q such thatqy € qo. This is the initial information
until the next transition. Since discrete transitions g®n that we have on the state of the system. On the basis of
only the discrete state, we have thét;.1) = x(r{) for all  the history up to time, we define the non-deterministic
i. For convenience, we take the $e to be a singleton, discrete information state.
denotede. This model is a special case of the general Definition 1: The non-deterministic discrete informa-
hybrid automaton model in standard references [12], ition state at timet is the setq(7;) ¢ Q defined as
which there is no continuous state reset and no discrete — . ~
control inputs. It may be noticed here that although the € QI3 do€ o Fe St a=dalt, %, 1)
jump predicate is missing, the vector field is allowed to gy . and3 d; st.
be discontinuous, which can model switches in vector X(1) = T1(X(1), ¢g(7, 9o, 77), U(7), d(7))
field resulting from autonomous discrete transitions. An forall r <t
example is provided in Section V. Basically, q(7j) is the set of all current modes that are
We denote byr{ the hybrid time trajectory up to time compatible with the measured continuous state trajectory
t for t € 7, that is, lettingN; := sufilr; < t} we and with the discrete state update nRp
have 7y = UiNz‘O[ri,ri’] UlTtne1,t], in which Ty, = tif A consequence of this definition is that the set of all
there are discrete transitions at tinhe We denote by possible modes at time= 0, that is,q(770), given thatyg =
0t : Tt — X the discrete disturbance input signal up to(go, Xo) is given byq(no) = R(qo) due to the possibility of
time t. It forces discrete transitions at the timgsand multiple instantaneous transitions.
it keeps a constant value ilmv in between transitions Definition 2: (Weakly detectable modes) We say that
times, that is, fort € [rj,7]) for 7; < 7{. We denote ¢ € Q is weakly detectable provided for all (1, x) € U x X
by G : [0,t) — U the piecewise continuous controlthere isd € A such thatf(x, g, u,d) # f(x,q;,u,d) for all
input signal up to timet, and byd; : [0,t) — A deAandq;#q.
the piecewise continuous disturbance input signal up to A mode is weakly detectable when there is a dis-
time t. Given these input signals and initial conditionsturbance action that uniquely reveals the identity of the
(do, X0) € Q x X, the discrete and continuous trajectoriesnode. Of course, the disturbance may choose to always
at any timer <t are denoted byq(7,do, ) := d(r) and play in a range so that the identity of the mode is never
ox(, (X0, 90), U-, d7, ), respectively. Note that according revealed. The property of weak detectability is useful
to the definition ofq(t), we have thatpq(0, o, 50) = qo if ~ for characterizing the possible transitions of the non-
and only ifrg < 71. deterministic information state. In the sequel, we thus
We definegy(0, (Xo, do), Uo, 60, 09) := Xo. The contin- assume that all the modes ki are weakly detectable:
uous trajectoryx(r) := éx(t, (X0, o), U, d;, &) satisfies Assumption 1: All modes inQ are weakly detectable.
X(1) = T(X(1), ¢q(7, Q0. 0), u(r),d(r)) Y7 < t. For an If all modes are weakly detectable, there is a disturbance
initial set of modesy ¢ Q, we denote the set of modesaction at time 0 which leads to a measuremen0*)



that is compatible with only one of the modes possible at An immediate consequence of this fact is that if the
time 0. This fact and the fact th&d can have multiple mapnr keeps the trajectory dfi” outsideB starting from
mode transitions at the same time leads to the followingpitial informationrng = (o, Xo), it also keeps the trajectory
proposition. of H™ outside B starting from initial informationy;, =
Proposition 1: Let g € 2° with g € g and letno =  (Q(ij,), X(t1)) for all t; > 0. This is formally stated by the
(0, %0)- Then, Assumption 1 implies that there #$0*) following proposition.
such thatg(7jo-) = R(q). Proposition 3: Let = be such that withyg = (qo, Xo)
Because inH multiple mode transitions are possiblewe haveg%(t, (qo, xo),ﬂt,&t) ¢ B for all o € qo, d, G
at the same time, i} € q(7;), then all modes reachable andt > 0. Then for allt; > 0, n is such that withpg =
from q; can also be im(7;). Furthermore, if the measured (q(7j, ), X(t1)) we havegi(t, (o, X(t1)), di, 1) ¢ B for all
signal x(t) for all t is generated under modg, then the qf € q(,), df, 6 andt > 0.
non-deterministic discrete information state is constant Note that sincey(no) = R(Qo), we have thaCz = Cg(g)
all time and equalk(q;). This is formally stated by the for all modesq e 2°. This is formally stated in the

following proposition. following proposition.

Proposition 2: Letno = (R(0), Xo) and letr = (T, %) Proposition 4: For all @ € 2°, we have thatCq =
with X(t) = ¢x(t, (Xo. ), Ui, &, €) for all t > 0. Then, for  Cgg.
all d; we haveq(7;) = R(q) for all t > 0. For systemH, we define theuncontrollable predeces-

Finally, the fact that the trajectories of systeinenjoy  sor operator for a fixed modeg; € Q and a seS C X as
the concatenation property and the definition qffi)  Prey(q;, S) := {Xo € X | ¥ 7, 3 d; st. ¢(t, (i, Xo), I, €) €
implies also thay(i7;) enjoys the concatenation property.Sy. It represents the set of all states that are take§ to
The next section introduces the safety control problenihdependently of the feedback map whenever the mode is
for the hybrid automaton with hidden modes constant tag;.

Il. THE CoNTROL PROBLEM WITH |IMPERFECT M ODE

A. Transforming the problem to a perfect state informa-
|NFORMATION

tion control problem
Let B c X be a set of continuous states to be avoided.

We consider the problem of designing a dynamic feedbacih
map that guarantees that the state never erBefsr a
suitable set of initial conditions. In particular, let 29 x

X — U and denote the closed-loop systetunder such a
map byH”, whose trajectories are thoseldfonce we set
u(t) = (q(), X(t)). We denote thex-trajectory of H™ by

&% (L, (Xo, qo),at, 0t). We thus seek to determine the set o
all initial conditionsng such that no feedback mapwith
initial information (i) exists that can keep the trajectory
&% (t, (X0, 9o), di, 61) out of B for all time whengp € Qo.
This set is called theapture set and can be written as

One of the dfficulties of solving Problem 1 resides in
e fact that the sei(7;) is computed on the basis of the
entire system history up to timeand keeping track of
this growing history is prohibitive. We therefore translat
Problem 1 to an equivalent control problem with perfect
state information as performed in the theory of games with
gmperfect information [11].

In order to define a control problem with perfect state
information, we construct aliscrete state estimate. A
discrete state estimate is a time-dependent set, denoted
g(t) € 29, with the properties that (i(7;) < §(t) for all
t > 0; (ii) For t; > t;, we have thag(t,) € R(§(ty)). We
C= U (@.Cq). note here thati() = Q for t > 0 always satisfies (i) and

ge2Q (i), but in general, it is easy to construct an update law for
g(t) as we show in Section V. In the case in which in (i)
equality holds for allt, the estimate is saiexact. Define
the new hybrid automatohl = (22, X, U, A, Y, Inv, R f),
in which X is a new set of discrete state¥,is a set
8t discrete eventsjnv is a set of silent events with
Yninv=0,R:2°9xY — 2% is a discrete state transition
map?l. Let 7 = Ui“io[%i,%i')] be a hybrid time trajectory
such thatrg = 7o, Y(77) € Y andy(t) € Inv for t € [7i, 7))
for all i such thatri < 7{. We represeniti by the following
equations

in which Cg = {x € X|¥r, dq € g, o, d,t >
0s.t. ¢%(t, (X0, Qo). i, 0t) € B}). The setCg is the set of
all continuous states that ent®& independently of the
feedback map when the mode of the system starts
the setq. This set is also referred to asode-dependent
capture set. Therefore, we state the problem as follows:

Problem 1: (Control Problem with Imperfect Sate
Information) Determine the capture s€t and the set of
feedback maps such that ifp(0) ¢ C, then @(r(t)), x(t)) ¢
Cforallt>0.

As a direct consequence of the facts thf};) enjoys G ﬁ(q(Ti'),y(%i')), y(#)eY (2)
the concatenation property, that the open loop trajedtorie 3 o) A r
enjoy the concatenation property, and thats a time- X e HXO. 40, u). dn). dO € A, ¥ € Inv
invariant map from 2xXto U, the trajectory of the closed 11t is important to note here that the discrete state spacH if a
loop systemH”™ also enjoys the concatenation property. subset of 2. Section V provides an illustration of this.



in which we have defined(f) := q(sup, i) Vter The This is a perfect state information problem as the
mapR is such thag(t) is a discrete state estimatg0J=  hybrid state is known to the controller. This problem
Xo and d(7o) = qo. This in turn implies that (aR(q, y) € has been solved in [17], in which an algorithm for the
R(Q) forally e Y andqe 29 and that (b)i=70=0and computation of the mode-dependent capture é@tsvas
y(75) is such thaiR(q(rO) y(7p)) := R(A(75)) = R(qo). Fix  provided along with termination conditions. We recall this
anyT > 0, y(t) derives information fromx.i_74 fort > T algorithm here for completeness. L& 2 {f, ..., Gum), be
about the values of(7) for 7 < t and uses this information the discrete state space of systé’mand define the tuple

to determine the current values @tompatible with such of sets S; € 2X for i € {1,...,M}. We define the map
a derivative (see [5], [1], [6] for details). G: (M = (2XM as
We denote byrt the hybrid time trajectory ofd up .
to time t for t € 7, that is, letN, = sugil# < 1), Pre(@r. Ujjig ey Si U B)
then 7, = UL[%, %] UlTg.0.tl in which 7, = t if G(S) = I
there are discrete transitions at tilhe We denote by Pre(qM’UiﬂqJeﬁ(qM v SjU B)

¥: : [0,t] — Y the discrete “disturbance” input signal up

to timet. It forces discrete transitions at the timgsand ~and consider the following iteration:

it keeps a constant value ifmv in between transitions ~ Algorithm 1: S%:=(S9, SJ,...,S%,) :=(0...., 0),
times, that is, fort € [#,%) for # < #/. This signal is a St =G(s9

disturbance for systerfl as it is not a controlled signal while Skt sk

but it is driven by nature’s actions. Given initial conditi® Skt = G(SY)

(qo, Xo) € 29x X, the discrete and continuous trajectories oend.

H at any timer < t are denoted ba(7, Go, ¥-) = §(r) and  In [17], it was shown that if Algorithm 1 terminates, the
os(7, (Qo, %o), Uy, dT,yT) = R(r), respectively. We define fixed point is equal to the tuple of setétq( CqM)
#(0, (G, Xo), Uo, do, o) := Xo. Any continuous trajectory Furthermore, [7] presented a linear complexity algorithm
K(7) satisfiesi?(r)Ae f(R(1), #g(r, o, ¥:), u(r), d(r)) ¥ = < t.  for computation of the Pre operator for the special case
We assume thdtnv is a singleton and is equal when the system dynamics are order preserving.

In system (2), the state is known gf)’is known and In this paper, we focus on determining conditions under
K(t) = x(t) is measured. Basically, the dynamics in (2) which Problems 1 and 2 are equivalent. Specifically, we
describes the set of dynamicsyfhat are compatible with formalize the equivalence between these two problems
the current discrete state estimate. Sigft¢ i$ a discrete through the following definition.
state estimate ofy(t), any continuous state trajectory Definition 3: (Equivalence) We say that Problem 1
possible inH is also possible irH. and Problem 2 are equivalent provide€g = Cq for all

Let 7 : 22 x X — U be a feedback map. We denoteq € 2°.
the closed loop systed by H”, the system in equations  The next section is devoted to proving the equivalence
(2), in which we have seai(t) = 7(§(t), X(t)). The capture between Problems 1 and 2.

set for systent is given by
IV. SHOWING THE EQUIVALENCE

C= U (q, Cq)’ We sho i
0 w the equivalence between Problem 1 and
. Problem 2 by first showing tha€g C Cq and by then
in which Cg = {x € XI¥&%3d %t = showing the reverse inclusia®y 2 Cg.
0st. somepi(t, (G, %), &, %) € B i Lemma 1: For all §e 22, we have thaCq ¢ Cq.
For a hyb”d time trajectory such thaf = co, we have Proof: Proceeding by contradiction argument, as-

thaty(t) = € for all t > 0. We denote the correspondlngSurne thatx, € Cy but xo ¢ Cg Since X, € Cg
continuous trajectory dff by X(t) = ¢(r. (%0, 90). Ur. dr.€)  for all feedback mapsr with initial non-deterministic
and it is such that it sa_ltlsflee(t) e f(X(t), qo, u(t), d(‘%) for information statey(0) = R(@), there iso € G, &+, di, and
all t > 0. We thus define for a s@ c X andqge 2¥ the {5 g gych thas”(t, (o, Xo), ok, &) € B. However, because
uncontrolIaAbIe~predecessor operator foras Preg, S) := Xo & Cq there is a feedback mapW|th §(0) = R(@) such
(X € X[Vadd.t > 0.s.t. some(t, (x0.0).d.€) € Bl. thatforalld;, §, t > 0 all flows ¢ (t, (G Xo), i, ) € B. In
This set represents S the set of all states that are mapyzd t‘bar'ucular this is true foy"such thay*(t) = e forall t > O,
when the mode estimate is constangtWheng =g € d,  \hich implies that(t) = §(0) = R(@) for all t > 0. Thus,
the Pre operator simplifies to Peg(B) = Pre.(q;, B). there is a simple feedback maf(x) := #(g(0). ) such

We now state the new control_problem as follows.  ihat for all d. andt > 0 all flows ¢7r (t, (T, %), dt,yk) ¢B
Problem 2: (Control Problemwith Perfect Sate Infor- ¢ 41 ¢t > 0. A trajectoryx(t) = ¢7r (t, (G %), a., ¥ is in

mation) Determine the captureAsét and the set of feed- ; by definition any trajectory satisfying
back mapsrsuch that ifp(0) ¢ C, then all ({t), X(t)) ¢ C .
for all t > 0. X(t) € (X)), R(@), 7" (X(1)), d(1)). 3)



Similarly, x(t) = ¢7(t, (0o %), v) with o € q
is any trajectory satisfyingx(f) = f(x(t), ¢q(t, o, 0),
7' (X(1)), d(1)). Sinceqp € q, it follows that any suchx(t)
satisfies also (3) for ati"andd;. As a consequence; is
such that? (t, (go, Xo), &k, 5¢) ¢ B for all t > 0, all d, and

all . This contradicts thaxg € Cg. Therefore, it must be

that % € Cg. u

We next focus on showing thafy < Cg This is
proven by first showing tha‘ﬁq € Uqer@ Pre(, B) and
by then showing that J.x@g Pre@. B) < Cg. In order to

7(X) there isd; such thatgZ(t, (. Xo), di €) € B. If xo ¢
Cg(g), there is a feedback magfq(7;), X) such that for all
Qo € R(i), &1, d;, it guarantees thag(t, (qo, Xo), dk, 71) ¢
B for all t > 0. In particular, such a feedback map
guarantees thap%(t, (do, o), di, 01) ¢ B for qo = g and
ot = e. That is, ¢(t, (0, Xo), dr. €) ¢ B for all t > 0. By
Proposition 2, we have that(t, (g, Xo), d, €) for all d; is
such thatq(7;) = R(q) for all t > 0. As a consequence,
the mapz(q(n). x) that guaranteed’(t, (g, Xo), di, €) ¢ B
for all t > 0 is just a simple map fronx as q(;) is

show the first inclusion, we need the following structuratonstant for all time. That is, we can define the new

assumption.
Assumption 2: For allq e 2° we have that Prg(B) =

Uqeq Pre@i, B).

map 7(x) = n(R(q), X) so that for alld;, it guarantees
that ¢%(t, (ai, Xo), i, €) ¢ B for all t. This contradicts the
fact that Xy € Pre(;, B). Hence, ifxo € Pre@;, B) also

This assumption is satisfied if anythat is reachable Xo € Cgr(), leading to the desired result. ]

by a trajectory of systentl when the mode is equal

This result is non-trivial because the feedback map

to § = {0.,....qn} is also reachable by a trajectory ofinvolved in the definition of Pref, B) is a simple feedback
H when the mode is equal tq = {g;} for at least one map fromx, while the one involved in the definition of

i €{1,...,n}. This assumption can be in general checke€xq) has more information than only, which derives
computationally. In the special case in which the dynamickom the current non-deterministic discrete information
of x for q € q andd € A are order preserving, the state.

assumption is automatically satisfied (see Proposition 5 Lemma 4: Let g € g€ 2°. Then,Cg(q) C Cq-

in the Appendix). This assumption enables the proof of

the following result.

Lemma 2: If Algorithm 1 terminates, under Assump- &, d, andt >

tions 1 and 2 we have thélg C Uger Pre@, B).

Proof: If Algorithm 1 termi-
nates in n steps, we can write Cg =
Pre (G, Ug, gy Pre (@i Ug,era,v Pre (q,—i,...
Us, @, ,») Pre@j, .. B)...))). Having gj, € R@GY)
implies (by the definition ofR) that §;, < R(Q).
Since we also have thatg,” < R(§,) for
k € {2,..,n -1}, it follows that dj, < R(q). From

the properties of the Pre operator (see [17]), we
have that Pref), ,,B) < Pre{R(g),B) and thus that

Cq < Pre(a Ug, crgy) Pre(@ir- Ug,,erq, 9 Pre(@i.: -
Us, k@, o) Pre(q;, ,(PreR(). B)))...))). In this
expression, we in turn have thety g . v Predi,..

(Pre(R(9), B))  Pre(R(d), (PreR(d), B))). BY continuing
substituting gx  with R(g), we finally obtain that
Cq < Pre(R(Q), Pre(R(@), ..., PreR(@), B)...)) , which by
the properties of the Pre operator is equal to Rfg), B).

By Assumption 2, Preg(d),B) = Uqexg Pre@.B),
leading toCq € Uqer(g Pre@. B)- [ |

Proof: Let Xo € Cg(q), then for all feedback maps
with initial informationq(ino) = R(q;), there aray € R(q;),

0 such thatgZ(t, (o, Xo). &, ) € B.
Assume thatxg ¢ Cg. SinceCqg = Cgg by Proposition
4, there is a feedback mag with initial information
d(no) = R(@ such that for allgy € R(@), di, o, t > 0

#% (1, (Qo, xo),&t,&t) ¢ B. In particular, this must be true
for all qo € R(q;) € R(@) and ford; such thatd(0) causes
flo- with q(7jo+) = R(qi), which exists from Proposition 1.
Since x(0*) = x(0) = X and q(7o+) = R(q;), by Proposi-
tion 3, feedback map” with n; = (%o, R(q;)) is such that
for all Qo € R(QI)! &h dtl t> 01 ¢J)Z*(t’ (QO, XO)’d'[’ &t) ¢ B.
his, however, contradicts thab € Cgr(). Thus if xg €
Cr) We must also have thaty € Cg, leading to the
desired result. [ |
Note that if R(g;) c q, this result is trivial. However, in
generalR(qg) c q is not true. Nevertheless, because of
Proposition 1, we can have an instantaneous transition
form q to R(q;), which leads to havin€x) < Cg.

Lemma5: For all ¢ e 2° we have that
qu‘R(ﬁ) Preq, B) c Ca _
Proof: By Lemma 4, for allgq € q we

have that Cgq) < Cg Therefore, we have that

The next two lemmas are intermediate steps needed (t, .sCrq) S Cq Employing Lemma 4 again, we ob-

show that sz Pre@. B) < Cg:
Lemma 3: For all g € Q, we have that Pre(, B) C
Craa)-

Proof: Assume by contradiction argument thate
Pre@,B) but Xo ¢ Cgq). By the definition of Pre, it
follows that for all mapsn(q;, X) there is di such that
o5 (t, (qi,xo),&t,e) € B. Since the first argument of is
constant tag;, we can define the new mayx) := 7(q;, X).

tain that for all g € R(q) we have thatCgq) <

Cra), SO that Ugerq)Cra) S Cr@)- As a conse-

quence, we have th&llycqUger(q) Cri@) < Cq in which

Ugeg Uger@) Cr@) = Uqger@ Cr@- Employing Lemma

3, we obtain that Jcr@g Pre@. B) € Uqer@ Cr(, l€ading

to the desired result. [ ]
Theorem 1: If Algorithm 1 terminates, under As-

sumptions 1 and 2 Problem 1 and Problem 2 are equiva-

Then xo € Pre(, B) implies that for all feedback maps lent.
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Fig. 1. Two-vehicle Conflict Scenario Vehicle 1 (autonomous) “(dy « " (e)

is equipped with a cooperative active safety system and asmm

nicates with the infrastructure via wireless. Vehicle 2rttan-  Fig. 2. In each of the plots (a)—(e), the red box represents

driven) is not equipped and does not communicate with thB-1,Ui] X [L2, Uz]. Since the sets Prg(B)y and Preg B). are

infrastructure. A collision occurs when more than one vehic four dimensional, we plot slices of these sets in the X3)

occupies the conflict area at one time. (Right) Diagram repreposition plane corresponding to the current speed valess).

senting magR and diagram representing map The black solid lines delimit the slice of the set Rg&)y in

position plane for the current speeds valugs X,). Similarly,

Proof: Lemma 2 and Lemma 5 prove that for allthe green dashed lines delimit the slice of the setd®B(in

ge 29 we have thaqu C Cg. The reverse inclusion is position plane for the same current speeds valugsx{). The

5 8 8 8 8 8

200

proven by Lemma 1. m ntersection of these two slices delimits the slice of theremt
mode dependent capture g8} for the same current speeds
V. APPLICATION EXAMPLE values &, X4). The red circle denotes the current positianxs,

. . . while the blue trace represents the projection in the pmositi
As an example, consider the conflict resolution probpjane of the continuous trajectory d¢f. Plot (a) shows the

lem between two vehicles as depicted in Figure 1. Thgitial configuration in the position plane. Here, the catrmode
autonomous vehicle communicates with the infrastructurstimate isq”= {a,b,c}. Plot (b) shows the mode estimate
and has access to position and speed information abdijfitching tod'= {c, b}. Plot (c) shows the time at which the mode

all vehicles in the intersection. The human-driven vehicl&Simate becomeg = {bj, so that the current mode is locked.
lot (d) shows when the continuous state hits the boundary of

does not communicate. In order to reduce the uncertainfyfe cyrrent mode-dependent capture set and thus safe lcisntro
on its behavior, we consider a human driving model withypplied.

three modes: acceleratiam coastingc, and brakingb. i R R R

The system can start in any of these modes and tif¢hich we denotey; = {a,b. ¢}, G2 = {c, b}, Gs = {b}, and
human driven vehicle can transit from acceleration, t(0) = &, is uniquely defined once the s¥tand map
coasting, to braking, to model the fact that as it approach&sa/e defined. For this sake, consider the estinée=
the intersection, it may decide that it is safe to slowr Jir Va(D)dr, t> T. For each possible value oft), we
down [9]. This scenario can be modeled by the systegompute the interval in which(t) must lie. Thus, we have
H = (QXUAZInvR f), in which Q = {acb}, thefollowing.Forg(t) = a, we have thaj3(t)—pal < Ba; for
U =[u,un], A =[-d,d], £ ={c"},andR: Qx= — Qis d(t) = ¢, we have thap(t) € [-d,a+d]; and forq(t) = b,
represented in the top right diagram of Figure 1. Denotinge have thaB(t) € [-[Bo| — d.Ba + d]. Given this , we
X = (X1, X2, X3, Xa) With X3 = P, Xo = V1, X3 = P2, X4 = Va, have that if,BA(t) € [-[Bul — d, —d] then necessarilg(t) = b.
the unsafe set is given bB = {x | (X1, X3) € [L1, Uq] X Similarly, if (t) € [-d, 0] thena is not currently possible
[L,, Us]}. The vector fieldf is piece-wise continuous and and thus we must necessarily have thét € {c,b}. As

given by f(x, g, u,d) = (f1(x, u), f2(x, g, d)), with a consequence, we define= {yw, Vb, €} and define for
t>T
(X2, @), if X2 € (Viin, Vimax) . _ A
fi(x,u) =4 (x2,0), if X2 < Vimin anda <0 (4) Yoo if B(t) € [-d, O] and((t") = &
Of X2 > Vimay anda > 0, yit) =1 yo if B(t) € [<IBbl — d, —d] and§(t") € {§1. G2}
(X4, Bq + d), if X4 € (Vimin, Viex) e otherwise.
fa(x,q,d) ={ (xs,0), if X4 < Vimin andBq+d <0

Of X4 > Vimax @ndBq +d > 0, Thus, R is represented in the bottom right diagram of
(5) Figure 1. The properties of a mode estimator are satisfied.
in which @ = kyu—kzx3 — ks [18]. It describes the vehicles One can easily verify that Algorithm 1 terminates and
longitudinal dynamics along their paths. Here, we assuntbat Cq, = Pre(, B), Cq, = Pre(i, B), Cg, = Pre(, B).
thatB, < 0, Bc = 0, andB, > 0, with d < 34| < 2d for In this case, the set of discrete modes on witicavolves
q € {a,b}. This guarantees that Assumption 1 is satisfiets a strict subset of @ given by O := {f1, 2. G3}. By
for x, and x4 both in the open intervaivfin, Vmax). This  virtue of Proposition 5, Assumption 2 is satisfied for all
also implies that there is a confusion between madles @ e Q. The sets Preg; B), Pre¢i, B), and Pregs, B) can
andc and between modes anda. The estimatoH, in  be easily calculated with a linear complexity discrete time



algorithm as in each mode the dynamics are given by th&2] J. Lygeros, C. J. Tomlin, and S. Sastry. Controllersréachability

parallel composition of two order preserving systems and
B is an interval [7]. In particular, these sets are given af3)

Pre@, B) = Pre(, B)L. n Pre( B)u, in which Pre@; B). =
{(x € X | 3At, d st some ¢g(t, (% §),d, U, €) €
B} and Preg, B)n {X €
X |3t d st somegg(t, (X 8),d,us,e) € B} (see

[17], [4] for more details on these computationalls]

techniques). The map(q, x) for every mode estimate
g is active only whenx is on the boundary og and

in such a case it makes the continuous state slide &1

the boundary of:q [17], [4]. Simulation results for the
closed loop systent™ are shown in Figure 2.

VI. CONCLUSIONS

In this paper, we have considered the safety control
problem for hybrid systems with hidden modes. In acl9l
cordance to what is performed in games of imperfect

specifications for hybrid systemsAutomatica, 35(3):349 — 370,
1999.

J. H. Reif. The complexity of two-player games of incdeip
information. Journal of Computer System Sciences, 29(2):274—
301, 1984.

C.-E. Seah and I. Hwang. Terminal-area aircraft tragkdy hybrid
estimation. AIAA Journal of Guidance, Control and Dynamics,
32(3):836—-849, 2009.

O. Shakernia, G. J. Pappas, and S. Sastry. Semi-déeigiafthesis
for triangular hybrid ststems. IHybrid Systems: Computation and
Control, volume 2034, pages 949-970. Springer Veralg, 2001.
U.S. DOT Joint Program fiice ITS. http/www.its.dot.gov.

R. Verma and D. Del Vecchio. Continuous control of hgbri
automata with imperfect mode information assuming sejoarat
between state estimation and control. Gonference on Decision
and Control, 2009.

R. Verma, D. Del Vecchio, and H. Fathy. Development of a
scaled vehicle with longitudinal dynamics of a HMMWYV for an
ITS testbed ] EEE/ASME Transactions on Mechatronics, 13:46-57,
2008.

M. D. Wulf, L. Doyen, and J. F. Raskin. A lattice theoryr feplving
games of imperfect information. IHybrid Systems: Computation
and Control, volume 3927, pages 153-173. Springer-Veralg, 1984.

[14]

[16]

(28]

information [13], [19], [11], we translated the imperfect

information control problem to a perfect information
control problem. This new control problem with perfect

APPENDIX
Proposition 5: Consider systeril and letX = X3 x X

information has been solved in our earlier work [17]. InWith X; = (X11, ..., X1n) € X1 @and xz = (X21, ..., Xoam) € Xa.
this paper, we have focused on proving the equivalence bleet g € 2° and assume that

tween the two control problems under a weak detectability(i) there aref; : X3 xU — Xq, andf : X x Qx D —
assumption and an assumption on the structure of the Xy such thatf(x,q,u,d) = (fi(x1, u), f2(x2, g, d)) for

uncontrollable predecessor operator. In our future work,

X1 € Xp andxp € Xp;

we will incorporate discrete control inputs and continuoudii) there is fo : X; x R — X; such that we have that

state uncertainty into the model.
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{f2(x2,q,d) | d € D} = {fy(x2,d) | d € D(q)} for a
suitable setD(g) c R and the systenxy = fa(xg, d)
with d € D(Q) is an order preserving system (see [4]
for definition of order preserving system);
(iii) D(a) = Ugeg D(a);
(iv) B={(x1,%2) | (X11, X21) € [L1,U1] x [L2, U2]}.
Then, Preg. B) = UqgPre@. B).
Proof: It is enough to show that if ¢, Xx;) €
Pre@, B), then there ig| € q such that X1, X2) € Pre@, B).
If (X1, X%2) € Pre(, B), then for allx there isd € S(D(q))
and t > 0 such that¢f (t,x1) € [Li,Us] and
b, (L, X, d) € [Lz,Us] (by () and (iv)). Since
D(q) [dL(g),dy(q)] and the flow preserves the
ordering with respect to the input by (ii), we have that

y = ¢X2,1(ts )?2’ d) € [¢X2,1(ts )?2’ dL(a))’ ¢X2,1(t’ )?2, dH ((_1))]

Since D(q) UgegD(@) by (i) we also have
that D(0) =  Ugegldi(a).du(a)]. Therefore, we
have that i, (t X, OL(@). ds(t. % Ou(@)] =
quﬁ[(p)(z,l (t, X2, dL (Q)), ¢X2,1 (t, XZ,_dH (Q))] As a
consequence, there iy € q such thaty €

[¢Xz,1(t’ )?2, dL(Q))’ ¢X2,1(ts )?2’ dH(q))] By the ContinUity
of the flow with respect to the input signal, we have
that for all y € [fy,(t %, di(@) bx.(t %, du(@)],
there is an input signabt” € S([d.(q),dn(q)]) such
that ¢x,,(t, X2,d’) = y. Thus, we can conclude that
for all = there isq € q and d’ € S(D(g)) such that
(t, X1) € [L1, U1] and ¢, (t, X2, d’) € [Lo, U2]. This, in
[ |

i
X1,1

turn, implies that Xg, x2) € Pre(, B).



