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Abstract

We address the problem of estimating discrete variables in a class of deterministic transition systems in which the continuous variables are
available for measurement. We propose a novel approach to the estimation of discrete variables using lattice theory that overcomes some of
the severe complexity issues encountered in previous work. The methodology proposed for the estimation of discrete variables is general as it
is applicable to any observable system. Extensions generalize the approach to nondeterministic transition systems. The proposed estimator is
finally constructed for a multi-robot system involving two teams competing against each other.
� 2005 Elsevier Ltd. All rights reserved.
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1. Introduction

In the last decade, hybrid system models have become very
popular in the control community. The need for understand-
ing the behavior of systems whose evolution is determined by
the interplay of continuous dynamics and logic is compelling.
In several applications, the coupling of continuous dynamics
and decision protocols renders the system under study inter-
esting and complicated enough that new mathematical tools
are needed for the sake of analysis and control. Examples
include the Internet, continuous plants controlled by digital
controllers, multi-agent systems, biological systems, and many
others. Issues such as controllability and observability arise
naturally when trying to analyze the properties of these systems
for control.
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The problem of estimating and tracking the values of non-
measurable variables in hybrid systems with reasonable compu-
tational effort is a challenging one. Bemporad, Ferrari-Trecate,
and Morari (1999) show that observability properties are hard
to check for hybrid systems and an observer is proposed that
requires large amounts of computation. As a starting point, we
consider the problem of estimating the discrete variable values
when the continuous variables are available for measurement.
This simplified scenario is already of practical interest as it is in
the case of multi-robot systems. The continuous variables are
quantities that we can measure directly, such as position and
velocity, the discrete variables can represent the internal state
of the decision and communication protocol that is used for
coordination and control. We seek to construct a discrete state
estimator with computational requirements comparable to that
needed for simulating the system itself.

There is a wealth of research on observability and ob-
server design for hybrid and discrete event systems. Bemporad
et al. (1999) propose the notion of incremental observability for
piecewise affine systems and propose a deadbeat observer that
requires large amounts of computation. Balluchi, Benvenuti,
Di Benedetto, and Sangiovanni-Vincentelli (2002) combine a
location observer with a Luenberger observer to design hybrid
observers that identify the location in a finite number of steps
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and converges exponentially to the continuous state. However,
if the number of locations is large, as in the systems that
we consider, such an approach is impracticable. In Balluchi,
Benvenuti, Di Benedetto, and Sangiovanni-Vincentelli (2003)
sufficient conditions for a linear hybrid system to be final
state determinable are given. In Alessandri and Coletta (2001,
2003) Luenberger-like observers are proposed for hybrid sys-
tems where the system location is known. Vidal, Chiuso, and
Soatto (2002) derive sufficient and necessary conditions for
observability of discrete time jump-linear systems, based on a
simple rank test on the parameters of the model. In later work
(Vidal, Chiuso, Soatto, & Sastry, 2003), these notions are gen-
eralized to the case of continuous time jump linear systems. For
jump Markov linear systems, Costa and do Val (2002) derive
test for observability, and Cassandra, Kaelbling, and Littman
(1994) propose an approach to optimal control for partially ob-
servable Markov decision processes. For continuous time hy-
brid systems, De Santis, Di Benedetto, and Pola (2003) pro-
pose a definition of observability based on the possibility of
reconstructing the system state and testable conditions for ob-
servability are provided.

In the discrete event literature, observability has been de-
fined by Ramadge (1986), for example, which derive a test for
current state observability. Oishi, Hwang, and Tomlin (2003)
derive a test for immediate observability in which the state of
the system can be unambiguously reconstructed from the out-
put associated with the current state and last and next events.
Özveren and Willsky (1990), Caines, Greiner, and Wang (1991)
and Caines and Wang (1995) propose discrete event observers
based on the construction of the current-location observation
tree that, as explored also in Del Vecchio and Klavins (2003),
is impracticable when the number of locations is large, which
is our case.

The main contribution of this paper is our approach to the
estimation of the discrete variable values of a system (discrete
state) that allows us to overcome some of the complexity issues
encountered in previous work. In particular, given a system �
whose discrete state needs to be estimated, we extend it to a
lattice (�, �), so that if the extended system �̃ and the lattice
are interval compatible, an estimator �̂ can be constructed that
updates only two variables instead of an entire list of possible
discrete states. These two variables are the lower and upper
bounds of the set of possible discrete states compatible with
the output sequence. In Section 2, we propose a multi-robot
example to illustrate this idea. This approach to estimation is
also general as it applies to any observable system in which
the continuous variables are measured. In fact, we show that a
system is observable if and only if there is a lattice in which the
extended system satisfies the requirements for the construction
of the proposed estimator.

This paper is organized as follows. In Section 3, we review
some basics on partial order theory and on observability. In
Section 4, we formulate the problem that we seek to solve and a
solution is proposed. Section 5 illustrates in detail the RoboFlag
Drill system, its estimator is constructed, and complexity
considerations are included. Section 6 proposes extensions to
basic results that include the existence result for the estimator

as well as the generalization of our arguments to nondetermin-
istic systems.

2. Motivating example

As motivating example, we consider a task that represents
a defensive maneuver for a robotic “capture the flag” game,
(D’Andrea et al., 2003). We do not propose to devise a strategy
that addresses the full complexity of the game. Instead, we
examine the following very simple drill or exercise that we
call “RoboFlag Drill”. Some number of blue robots with posi-
tions (zi, 0) ∈ R2 (denoted by open circles) must defend their
zone {(x, y) ∈ R2|y�0} from an equal number of incoming
red robots (denoted by solid circles). The positions of the red
robots are (xi, yi) ∈ R2. An example for eight robots is illus-
trated in Fig. 1. The red robots move straight toward the blue
defensive zone. The blue robots are assigned each to a red robot
and they coordinate to intercept the red robots. Let N represent
the number of robots in each team. The robots start with an
arbitrary (bijective) assignment � : {1, . . . , N} → {1, . . . , N},
where �i is the red robot that blue robot i is required to in-
tercept. At each step, each blue robot communicates with its
neighbors and decides to either switch assignments with its left
or right neighbor or keep its assignment. It is possible to show
that the � assignment reaches the equilibrium value (1, . . . , N)

(see Klavins & Murray, 2004; Klavins, 2003 for details). We
consider the problem of estimating the current assignment �
given the motions of the blue robots, which might be of inter-
est to, for example, the red robots in that they may use such
information to determine a better strategy of attack. We do not
consider the problem of how they would change their strategy
in this paper.

The RoboFlag Drill system can be specified by the following
rules:

yi(k + 1) = yi(k) − � if yi(k)��, (1)

zi(k + 1) = zi(k) + � if zi(k) < x�i (k), (2)

zi(k + 1) = zi(k) − � if zi(k) > x�i (k), (3)

(�i (k + 1), �i+1(k + 1)) = (�i+1(k), �i (k))

if x�i (k) �zi+1(k) ∧ x�i+1(k) �zi+1(k), (4)

where we assume zi �zi+1 and xi < zi < xi+1 for all k. Also,
if none of the “if” statements above are verified for a given
variable, the new value of the variable is equal to the old one.
This system is a slight simplification of the original system
described in Klavins (2003).

Eq. (4) establishes that two robots trade their assignments if
the current assignments cause them to go toward each other.
The question we are interested in is the following: given the
evolution of the measurable quantities z, x, y, can we build
an estimator that tracks on-line the value of the assignment
�(k)? The value of � ∈ perm(N) determines what has been
called in previous work the location of the system (see Balluchi
et al., 2002). The number of possible locations is N !, which, for
N �8, renders prohibitive the application of location observers
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Fig. 1. Example of the RoboFlag Drill with eight robots per team.

based on the current-location observation tree as described in
Caines et al. (1991) and used in Balluchi et al. (2002), Özveren
and Willsky (1990), or discrete state observers based on similar
concepts as the one in Del Vecchio and Klavins (2003). At each
step, the set of possible � values compatible with the current
output and with the previously seen outputs can be so large to
render impractical its computation. As an example, we consider
the situation depicted in Fig. 1 (left) where N = 8. We see the
blue robots 1, 3, 5 going right and the others going left. From
Eqs. (2)–(3) with xi < zi < xi+1, we deduce that the set of all
possible � ∈ perm(N) compatible with this observation is such
that �i � i + 1 for i ∈ {1, 2, 3} and �i � i for i ∈ {2, 4, 6, 7, 8}.
The size of this set is 40 320. According to the current-location
observation tree method, this set needs to be mapped forward
through the dynamics of the system to see what are the values
of � at the next step that correspond to this output. Such a set
is then intersected with the set of � values compatible with the
new observation. To overcome the complexity issue that comes
from the need of listing 40 320 elements for performing such
operations, we propose to represent a set by a lower L and an
upper U elements according to some partial order. Then, we
can perform the previously described operations only on L and
U, two elements instead of 40 320. This idea is developed in
the following paragraph.

For this example, we can view � ∈ NN . The set of possible
assignments compatible with the observation of the z motion de-
duced from Eqs. (2)–(3), denoted Oy(k), can be represented as
an interval with the order established component-wise, see the
diagram in Fig. 2. The function f̃ that maps such a set forward,
specified by Eqs. (4) with the assumption that xi < zi < xi+1,
simply swaps two adjacent robot assignments if these cause
the two robots to move toward each other. Thus, it maps the
set Oy(k) to the set f̃ (Oy(k)) shown in Fig. 2, which can still
be represented as an interval. When the new output measure-
ment becomes available (Fig. 1, right) we obtain the new set
Oy(k+1) reported in Fig. 2. The sets f̃ (Oy(k)) and Oy(k+1)

can be intersected by simply computing the maximum of their
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Fig. 2. The observation of the z motion at step k gives the set of possible
�, Oy(k). At each step, the set is described by the lower and upper bounds
of a interval sublattice in an appropriately defined lattice. Such set is then
mapped through the system dynamics (f̃ ) to obtain at step k + 1 the set
of � that are compatible also with the observation at step k. Such a set is
then intersected with Oy(k + 1), which is the set of � compatible with the z
motion observed at step k + 1.

lower bounds and the infimum of their upper bounds. This way,
we obtain the system that updates L and U, being L and U the
lower and upper bounds of the set of all possible � compatible
with the output sequence:

L(k + 1) = f̃ (max(L(k), inf Oy(k))),

U(k + 1) = f̃ (min(U(k), sup Oy(k))). (5)

As it will be shown in detail in the paper, the update
laws in Eqs. (5) have, among others, the property that
[L(k), U(k)] ∩ perm(N) tends to �(k). Letting V (k) =
|[L(k), U(k)] ∩ perm(N)|, Fig. 3 shows convergence plots
V (k) for the estimator compared to the convergence plots
E(k) = (1/N)

∑N
i=1 |�i (k) − i| of the assignment protocol to

its equilibrium (1, . . . , N).
This example gives an idea of how complexity issues can

be overcome with the aid of some partial order structure. In
particular, the function f̃ has the property of preserving the
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Fig. 3. Convergence plots for the estimator (V (k)) compared to the conver-
gence plots of the assignment protocol to its equilibrium (E(k)).

interval structure of the sets of interest: this is a key property
that allows to use only upper bounds and lower bounds for
computation purposes. In a more general setting, one would
like to know what are the properties of a system that allow
such simplifications. By using partial order theory, which is
introduced in the next section, we address this question.

3. Basic concepts

To construct the estimator introduced in the previous section,
which updates lower and upper bounds of the set of all possible
discrete variable values compatible with the output sequence,
we make use of tools from partial order (or lattice) theory
(Davey & Priesteley, 2002). The theory of partial orders, while
standard in computer science, may be less well known to the
intended audience of the paper. Therefore, we briefly review the
basic definitions and notation we will use before proceeding to
the main body of the paper.

3.1. Partial order theory

A partial order is a set � with a partial order relation “�”,
and we denote it by the pair (�, �). For any x, w ∈ �, the
sup{x, w} is the smallest element that is larger than both x and
w. In a similar way, the inf{x, w} is the largest element that is
smaller than both x and w. We define the join “�” and the meet
“�” of two elements x and w in � as (1) x�w = sup{x, w} and
x�w = inf{x, w}; (2) if S ⊆ �,

∨
S = sup S and

∧
S = inf S.

Let (�, �) be a partial order. If x�w ∈ � and x�w ∈ � for
any x, w ∈ �, then (�, �) is a lattice. In Fig. 4, we illustrate
Hasse diagrams (Davey & Priesteley, 2002) showing partially
ordered sets. From the diagram, it is easy to tell when one
element is less than another: x < w if and only if there is a se-
quence of connected line segments moving upward from x to w.

(a) (b)wx

x w

x w

wx

w

x w

x

x w(c)
(d)

x w

Fig. 4. In diagram (a) and (b), x and w are not related, but they have a
join and a meet, respectively. In diagram (c), we show a complete lattice. In
diagram (d), we show a partially ordered set that is not a lattice, since the
elements x and w have a meet, but not a join.

Let (�, �) be a partial order. Then, (�, �) is a chain if for
all x, w ∈ �, either x�w or w�x, that is any two elements
are comparable. If instead any two elements are not compa-
rable, i.e. x�y if and only if x = y, (�, �) is said to be an
anti-chain.

Let (�, �) be a lattice and let S ⊆ � be a nonempty subset
of �. Then, (S, �) is a sublattice of � if a, b ∈ S implies that
a�b ∈ S and a�b ∈ S. If any sublattice of � contains its least
and greatest elements, then (�, �) is called complete. Any finite
lattice is complete but infinite lattices may not be complete, and
hence the significance of the notion of a complete partial order
(CPO). Given a complete lattice (�, �), we will be concerned
with a special kind of a sublattice called an interval sublattice
defined as follows. Any interval sublattice of (�, �) is given
by [L, U ] = {w ∈ � | L�w�U} for L, U ∈ �. That is, this
special sublattice can be represented by only two elements. For
example, the intervals of (R, �) are just the familiar closed
intervals on the real line.

Let (�, �) be a lattice with least element ⊥. Then, a ∈ � is
called an atom if a > ⊥ and there is no element b such that
⊥ < b < a. The set of atoms of (�, �) is denoted A(�, �).

The power lattice of a set U, denoted (P(U), ⊆), is given
by the power set of U, P(U) (the set of all subsets of U),
ordered according to the set inclusion ⊆. The meet and join of
the power lattice is given by intersection and union. The bottom
element is the empty set, that is, ⊥ =∅, and the top element
is U itself, that is, 	 = U. Note that A(P(U), ⊆) = U. An
example is illustrated in Fig. 5. Given a set P, we denote by
|P | its cardinality. Next, we give some definitions about maps
on partial orders.

Let (P, �) and (Q, �) be partially ordered sets. A map
f : P → Q is (i) an order preserving map if x�w ⇒ f (x)�
f (w); (ii) an order embedding if x�w ⇐⇒ f (x)�f (w); (iii)
an order isomorphism if it is order embedding and it maps
P onto Q. If (P, �) and (Q, �) are lattices, then a map
f : P → Q is said to be a homomorphism if f is join-preserving
and meet-preserving, that is for all x, w ∈ P we have that
f (x�w) = f (x)�f (w) and f (x�w) = f (x)�f (w).

Proposition 1 (see Davey & Priesteley, 2002). If f : P → Q

is a bijective homomorphism, then it is an order isomorphism.
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Fig. 5. Power lattice (�, � ) of a set U composed by three elements.
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f (x)
f (w)
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Fig. 6. Diagram (e) shows a map that is order preserving but not order
embedding. Diagram (f) shows an order embedding that is not an order
isomorphism: any two elements maintain the same order relation, but in
between z and w there is nothing, while in between f (z) and f (w) some
other elements appear (it is not onto).

Every order isomorphic map faithfully mirrors the structure
of P onto Q. In Fig. 6 (right), we show some examples. The
notion of order preserving map can be generalized to the case in
which the map is nondeterministic, that is, it maps an element to
a set of possible elements. With a slight abuse of the term “order
preserving”, we also make the following nonstandard definition.
Let x, w ∈ �, with (�, �) a lattice, x�w, and f : � → P(�).
We say that f is order preserving if

∨
f (x)�

∨
f (w) and∧

f (x)�
∧

f (w).

3.2. Deterministic transition systems

The class of systems we are concerned with are determinis-
tic, infinite state systems with output. The following definition
introduces such a class.

Definition 3.1 (Deterministic transition systems). A determin-
istic transition system (DTS) is the tuple �=(S,Y, F, g), where
(i) S is a set of states with s ∈ S;

(ii) Y is a set of outputs with y ∈ Y;
(iii) F : S → S is the state transition function;
(iv) g : S → Y is the output function.

�1 �2 �3

�(Σ)

Fig. 7. Executions �2 and �3 are weakly equivalent according to Defini-
tion 3.5 while �1 is not weakly equivalent to either �2 or �3.

An execution of � is any sequence � = {s(k)}k∈N such that
s(0) ∈ S and s(k + 1) = F(s(k)) for all k ∈ N. The set of all
executions of � is denoted E(�).

Definition 3.2. Let � = (S,Y, F, g) be a deterministic tran-
sition system. The set � ⊂ S is the �+-limit set of �,
denoted �(�), if it is the smallest subset of S such that for all
� = {s(k)}k∈N

(i) If s(k) ∈ � and s(k + 1) = F(s(k)), then s(k + 1) ∈ �.
(ii) For each � ∈ E(�), there exists k� such that �(k�) ∈ �.

Definition 3.3. Given a deterministic transition system � =
(S,Y, F, g), two executions �1, �2 ∈ E(�) are distinguishable
if there exists a k such that g(�1(k)) 
= g(�2(k)).

Definition 3.4 (Observability). The deterministic transition
system � = (S,Y, F, g) is said to be observable if any two
different executions �1, �2 ∈ E(�) are distinguishable.

From this definition, we deduce that if a system � is ob-
servable, any two different initial states will give rise to two
executions �1 and �2 with different output sequences. Thus,
the initial states can be distinguished by looking at the output
sequence. However, there are systems for which two different
initial states cannot be distinguished, but the states at some
later step can. We introduce a weaker notion of observability
analogous to detectability (Sontag, 1998) that accounts for this
distinction.

Definition 3.5. Given a deterministic transition system � =
(S,Y, F, g), two executions �1, �2 ∈ E(�) are weakly equiva-
lent, denoted �1 ∼ �2, if there exists k∗ such that �1(k

∗) /∈ �(�)

and �1(k) = �2(k) for all k�k∗.

In Fig. 7, we show examples of equivalent and not equivalent
system executions.

Definition 3.6 (Weak observability). A deterministic transition
system � = (S,Y, F, g) is weakly observable if whenever
�1 /∼ �2 then there is k such that g(�1(k)) 
= g(�2(k)).
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In the next section, we propose the estimator construction
for observable systems, and in Section 6 we generalize the
results obtained for observable systems to the case the system
is weakly observable.

4. Estimator construction

In this section, we restrict the class of systems we consider
to those in which the continuous variables are measurable. The
discrete state estimation problem is then stated as the problem
of finding suitable update laws for the upper and lower bounds
of the set of all possible discrete variable values compatible
with the output sequence. A solution to this problem is proposed
in Theorem 4.1.

4.1. Problem formulation

The deterministic transition systems � we defined in the
previous section are quite general. In this section, we restrict
our attention to systems with a specific structure. In particular,
for a system �=(S,Y, F, g) we suppose that (i) S=U×Z with
U a finite set and Z a finite dimensional space; (ii) F = (f, h),
where f : U×Z → U and h : U×Z → Z; (iii) y=g(�, z) :=
z, where � ∈ U, z ∈ Z, y ∈ Y, and Y = Z. The set U
is a set of logic states and Z is a set of measured states or
physical states, as one might find in a robot system. In the case
of the example given in Section 2, U= perm(N) and Z= RN ,
the function f is represented by Eqs. (4) and the function h is
represented by Eqs. (2)–(3). In the sequel, we will denote this
class of DTS by � =S(U,Z, f, h) where we associate to the
tuple (U,Z, f, h), the equations:

�(k + 1) = f (�(k), z(k)),

z(k + 1) = h(�(k), z(k)),

y(k) = z(k), (6)

where � ∈ U and z ∈ Z. An execution of the system � in Eqs.
(6) is a sequence � = {�(k), z(k)}k∈N. The output sequence is
{y(k)}k∈N = {z(k)}k∈N. Given an execution � of the system
�, we denote the � and z sequences corresponding to such an
execution by {�(k)(�)}k∈N and {�(k)(z)}k∈N, respectively.

From the measurement of the output sequence, which in our
case coincides with the evolution of the continuous variables,
we want to construct a discrete state estimator: a system �̂
that takes as input the values of the measurable variables and
asymptotically tracks the value of the variable �. We thus define
in the following definition a deterministic transition system with
input.

Definition 4.1 (Deterministic transition system with in-
put). A deterministic transition system with input is a tuple
(S,I,Y, F, g) in which

(i) S is a set of states;
(ii) I is a set of inputs;

(iii) Y is a set of outputs;
(iv) F : S × I → S is a transition function;
(v) g : S → Y is an output function.

In Problem 1 below, we specify what the elements of this
tuple are when the DTS with input is a discrete state estimator
of a DTS � = S(U,Z, f, h). First, note that the set U does
not have a natural metric associated with it. As a consequence,
a way to track the value of � is to list, at each step k, the set of
all possible � values that are compatible with the observation
and with the system dynamics given in (6). This has been done
already in Del Vecchio and Klavins (2003), for example, where
the estimate is a list of possible values that the estimator has
to update when a new measurement becomes available. This
method leads to computational issues when the set to be listed
is large.

In this paper, we propose an alternative to simply maintain-
ing a list of all possible values for �. We propose to find a rep-
resentation of the set so that the estimator updates the represen-
tation of the set rather than the whole set itself. In particular,
if the set U can be immersed in a larger set � whose elements
can be related by an order relation � , we could represent a
subset of (�, �) as an interval sublattice [L, U ] (see Section
3.1). Let “id” denote the identity operator. We formulate the
discrete state estimation problem on a lattice as follows.

Problem 1 (Discrete state estimator on a lattice). Given the
deterministic transition system � = S(U,Z, f, h), find a de-
terministic transition system with input �̂= (�×�,Z×Z, �×
�, (f1, f2), id), with f1 : �×Z×Z → �, f2 : �×Z×Z →
�, U ⊆ �, with (�, �) a lattice, represented by the equations

L(k + 1) = f1(L(k), y(k), y(k + 1)),

U(k + 1) = f2(U(k), y(k), y(k + 1)),

with L(k) ∈ �, U(k) ∈ �, L(0) := ∧
�, U(0) := ∨

�, such
that

(i) L(k)��(k)�U(k) (correctness).
(ii) |[L(k + 1), U(k + 1)]|� |[L(k), U(k)]| (nonincreasing

error).
(iii) There exists k0 > 0 such that for any k�k0 we have

[L(k), U(k)] ∩ U = �(k) (convergence).

In the example shown in Section 2, we had that

f1(L(k), y(k), y(k + 1)) = f̃ (max(L(k), inf Oy(k)))

f2(U(k), y(k), y(k + 1)) = f̃ (min(U(k), sup Oy(k))),

where Oy(k) is the set of possible � compatible with the output
measurement at step k. Thus, in the following section we define
the output sets Oy and we explain what are desirable properties
of such sets, which will turn out to be interval sublattices. Also,
in the example proposed we have U = perm(N), and � the
set of vectors in NN with components xi ∈ [1, N ]. The order
is established component-wise, so that (�, �) is a complete
lattice. The function f̃ is defined on (�, �), it coincides with
f on U, and it preserves the structure of the interval sublattices
in (�, �). With f̃ , we extend the system defined on U to a
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system defined on �. This extended system is going to be for-
mally defined in the following section, and its desirable prop-
erties on the lattice (�, �) will be introduced as well.

4.2. Problem solution

For finding a solution to Problem 1, we need to find the
functions f1 and f2 defined on a lattice (�, �) such that U ⊆
� for some finite lattice �. We propose in the following def-
initions a way of extending a system � defined on U to a
system �̃ defined on � with U ⊆ �. Moreover, as we have
seen in the motivating example, we want to represent the set
of possible � values compatible with an output measurement
as an interval sublattice in (�, �). We thus define the �̃ tran-
sition classes, with each transition class corresponding to a
set of values in � compatible with an output measurement.
We define the partial order (�, �) and the system �̃ to be
interval compatible if such equivalence classes are interval
sublattices and �̃ preserves their structure. On the basis of
such notions, Theorem 4.1 below gives a possible solution
to Problem 1.

Definition 4.2 (Extended system). Given the deterministic tran-
sition system � = S(U,Z, f, h), an extension of � on �,
with U ⊆ � and (�, �) a complete lattice, is any system
�̃ = S(�,Z, f̃ , h̃), such that

(i) f̃ : � × Z → � and f̃ |U×Z = f ;
(ii) h̃ : � × Z → Z and h̃|U×Z = h.

Definition 4.3 (Transition sets). Let �̃ = S(�,Z, f̃ , h̃) be a
deterministic transition system. The nonempty sets T(z1,z2)(�̃)=
{w ∈ �|z2 = h̃(w, z1)}, for z1, z2 ∈ Z, are named the �̃-
transition sets.

Each �̃-transition set contains all of w ∈ � values that allow
the transition from z1 to z2 through h̃.

Definition 4.4 (Transition classes). The set of �̃-transition
classes is given by T(�̃)={T1(�̃), . . . ,TM(�̃)}, with Ti (�̃)

such that

(i) For any Ti (�̃) ∈ T(�̃) there are z1, z2 ∈ Z such that
Ti (�̃) = T(z1,z2)(�̃).

(ii) For any T(z1,z2)(�̃) there is j ∈ {1, . . . , M} such that

T(z1,z2)(�̃) = Tj (�̃).

Note that T(z1,z2) and T(z3,z4) might be the same set even if
(z1, z2) 
= (z3, z4): in the RoboFlag Drill example introduced
in Section 2, if robot j is moving right, the set of possible
values of �j is [j + 1, N ] independently of the values of zj (k).
Thus, T(z1,z2) and T(z3,z4) can define the same set that we call

Ti (�̃) for some i. Also, the transition classes Ti (�̃) are not
necessarily equivalence classes as they might not be pairwise
disjoint. However, for the RoboFlag Drill it is the case that the
transition classes are pairwise disjoint and thus they partition
the lattice (�, �) in equivalence classes.

Definition 4.5 (Output set). Given the extension �̃ =
S(�,Z, f̃ , h̃) of the deterministic transition system � =
S(U,Z, f, h) on the lattice (�, �), and given an out-
put sequence {y(k)}k∈N of �, the set Oy(k) := {w ∈
� | h̃(w, y(k)) = y(k + 1)} is the output set at step k.

Note that by definition, for any k, Oy(k) = T(y(k),y(k+1))(�̃),
and thus it is equal to Ti (�̃) for some i ∈ {1, . . . , M}. The
output set at step k is the set of all possible w values that are
compatible with the pair (y(k), y(k + 1)). By definition of the
extended functions (h̃|U×Z = h), this output set contains also
all of the values of � compatible with the same output pair.

Definition 4.6 (Interval compatibility). Given the extension
�̃ = S(�,Z, f̃ , h̃) of the system � = S(U,Z, f, h) on the
lattice (�, �), the pair (�̃, (�, �)) is said to be interval com-
patible if

(i) Each �̃-transition class, Ti (�̃) ∈ T(�̃), is an interval
sublattice of (�, �), i.e., Ti (�̃) = [∧Ti (�̃),

∨
Ti (�̃)].

(ii) f̃ : (Ti (�̃), z) → [f̃ (
∧

Ti (�̃), z), f̃ (
∨

Ti (�̃), z)] is
an order isomorphism for any i ∈ {1, . . . , M} and for any
z ∈ Z.

The following theorem gives the main result, which proposes
a solution for Problem 1.

Theorem 4.1. Assume that the deterministic transition system
� = S(U,Z, f, h) is observable. If there is a lattice (�, �),
such that the pair (�̃, (�, �)) is interval compatible, then the
deterministic transition system with input �̂ = (� × �,Z ×
Z, � × �, (f1, f2), id) with

f1(L(k), y(k), y(k + 1)) = f̃
(
L(k)�

∧
Oy(k), y(k)

)
,

f2(U(k), y(k), y(k + 1)) = f̃
(
U(k)�

∨
Oy(k), y(k)

)

solves Problem 1.

Proof. In order to prove the statement of the theorem, we need
to prove that the system

L(k + 1) = f̃
(
L(k)�

∧
Oy(k), y(k)

)
,

U(k + 1) = f̃
(
U(k)�

∨
Oy(k), y(k)

)
, (7)

with L(0) = ∧
�, U(0) = ∨

� is such that properties (i)–(iii)
of Problem 1 are satisfied. For simplicity of notation, we omit
the dependence of f̃ on its second argument.

Proof of (i): This is proved by induction on k. Base case:
for k = 0 we have that L(0) = ∧

� and that U(0) = ∨
�,

so that L(0)��(0)�U(0). Induction step: we assume that
L(k)��(k)�U(k) and we show that L(k + 1)��(k +
1)�U(k + 1). Note that �(k) ∈ Oy(k). This, along with the
assumption of the induction step, implies that

L(k)�
∧

Oy(k)��(k)�U(k)�
∨

Oy(k).
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Because we have that L(k)�
∧

Oy(k) ∈ Oy(k), and U(k)�
∨

Oy(k) ∈ Oy(k), and the pair (�̃, (�, �)) is interval compa-
tible, we can use the isomorphic property of f̃ (property
(ii) of Definition 4.6), which leads to

f̃
(
L(k)�

∧
Oy(k)

)
��(k + 1)� f̃

(
U(k)�

∨
Oy(k)

)
.

This relationship combined with Eq. (7) proves (i).
Proof of (ii): This can be shown by proving that for any

w ∈ [L(k + 1), U(k + 1)] there is z ∈ [L(k), U(k)] such that
w = f̃ (z). By Eq. (7), w ∈ [L(k + 1), U(k + 1)] implies that

f̃
(
L(k)�

∧
Oy(k)

)
�w� f̃

(
U(k)�

∨
Oy(k)

)
. (8)

In addition, we have that
∧

Oy(k)�L(k)�
∧

Oy(k)

and

U(k)�
∨

Oy(k)�
∨

Oy(k).

Because the pair (�̃, (�, �)) is interval compatible, by virtue of
the isomorphic property of f̃ (property (ii) of Definition 4.6),
we have that

f̃
(∧

Oy(k)
)

� f̃
(
L(k)�

∧
Oy(k)

)

and

f̃
(
U(k)�

∨
Oy(k)

)
� f̃

(∨
Oy(k)

)
.

This, along with relations (8) implies that w ∈ [f̃ (
∧

Oy(k)),

f̃ (
∨

Oy(k))]. From this, using again the order isomorphic
property of f̃ , we deduce that there is z ∈ Oy(k) such that
w = f̃ (z). This with relation (8) implies that

L(k)�
∧

Oy(k)�z�U(k)�
∨

Oy(k),

which in turn implies that x ∈ [L(k), U(k)].
Proof of (iii): We proceed by contradiction. Thus, assume

that for any k0 there exists a k�k0 such that {�(k), �k} ⊆
[L(k), U(k)]∩U for some �k 
= �(k) and �k ∈ U. By the proof
of part (ii) we also have that �k is such that �k = f̃ (�k−1) for
some �k−1 ∈ [L(k − 1), U(k − 1)].

We want to show that in fact �k−1 ∈ [L(k−1), U(k−1)]∩U.
If this is not the case, we can construct an infinite sequence
{ki}i∈N+ such that �ki

∈ [L(ki), U(ki)]∩U with �ki
=f̃ (�ki−1)

and �ki−1 ∈ [L(ki − 1), U(ki − 1)] ∩ (� − U). Notice that
|[L(k1 − 1), U(k1 − 1)] ∩ (� − U)| = M < ∞. Also, we have

|[L(k1), U(k1)] ∩ (� − U)| < |[L(k1 − 1), U(k1 − 1)]
∩ (� − U)|.

This is due to the fact that f̃ (�k1−1) /∈ [L(k1), U(k1)]∩(�−U),
and to the fact that each element in [L(k1), U(k1)] ∩ (� − U)

comes from one element in [L(k1 − 1), U(k1 − 1)] ∩ (� −
U) (proof of (ii) and because U is invariant under f̃ ). Thus,
we have a strictly decreasing sequence of natural numbers

{|[L(ki − 1), U(ki − 1)]∩ (�−U)|} with initial value M. Since
M is finite, we reach the contradiction that |[L(ki − 1), U(ki −
1)] ∩ (� − U)| < 0 for some i. Therefore, �k−1 ∈ [L(k − 1),

U(k − 1)] ∩ U.
Thus, for any k0 there is k�k0 such that {�(k), �k} ⊆ [L(k),

U(k)] ∩ U, with �k = f (�k−1) for some �k−1 ∈ [L(k − 1),

U(k − 1)] ∩ U. Also, from the proof of part (ii) we have that
�k−1 ∈ Oy(k − 1). As a consequence, there exists k̄ > 0 such
that {�k−1, z(k−1)}k � k̄=�1 and {�(k−1), z(k−1)}k � k̄=�2 are
two executions of � sharing the same output. This contradicts
the observability assumption. �

Corollary 4.1. If the extended system �̃ of an observable sys-
tem � is observable, then the estimator �̂ given in Theorem 4.1
solves Problem 1 with L(k) = U(k) = �(k) for k�k0.

Proof. The proof proceeds by contradiction. Assume that for
any k0 �0 there is k�k0 such that {�(k), �k} ⊆ [L(k), U(k)]
for some �k . By the proof of (ii) of Theorem 4.1, we have that
�k = f̃ (�k−1) for �k−1 ∈ [L(k − 1), U(k − 1)] and �k−1 ∈
Oy(k − 1). Thus, �1 = {�k−1, z(k − 1)}k∈N and �2 = {�(k −
1), z(k − 1)}k∈N are two executions of �̃ =S(�,Z, f̃ , h̃)that
share the same output sequence. This contradicts the observ-
ability of the system �̃. �

An example in which Theorem 4.1 holds but Corollary 4.1
does not is provided by the RoboFlag Drill introduced in Sec-
tion 2. In fact, if we allow the assignments to be in NN ,
there are different executions compatible with the same output
sequence.

5. Example: the RoboFlag Drill

The RoboFlag Drill has been described in Section 2. In this
section, we revisit it by finding a lattice and a system exten-
sion that can be used for constructing the estimator proposed
in Theorem 4.1. We define x = (x1, . . . , xN), z = (z1, . . . , zN),
�=(�1, . . . , �N). The complete RoboFlag specification is given
by the program in rules (1)–(4). In particular, the rules in
(2)–(3) model the function h : U × Z → Z that updates
the continuous variables, and the rules in (4) model the func-
tion f : U × Z → U that updates the discrete variables.
In this example, we have U = perm(N) the set of permuta-
tions of N elements, and Z = RN . Thus, the RoboFlag sys-
tem is given by � = S(perm(N), RN, f, h), and the variables
z ∈ RN are measured. The variables x are treated as known
parameters.

Problem 2 (RoboFlag Drill Observation Problem). Given ini-
tial values for x and y and the values of z corresponding to an
execution of � = S(perm(N), RN, f, h), determine the value
of � during that execution.

It can be shown that the system � =S(perm(N), RN, f, h)

reported in rules (1)–(4) with measured variable z is observable
(the interested reader is deferred to Del Vecchio & Murray,
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2004, for details). Then, the estimator is constructed in the
following section.

5.1. RoboFlag Drill estimator

In this section, we construct the estimator proposed in
Theorem 4.1 in order to estimate and track the value of the
assignment � in any execution. To accomplish this, we find a
lattice (�, �) in which to immerse the set U and an extension
�̃ of the system � to �, so that the pair (�̃, (�, �)) is interval
compatible.

We first construct a lattice (�, �) and the extended system
�̃=S(�,Z, f̃ , h̃) such that (�̃, (�, �)) is interval compatible.
We choose as � the set of vectors in NN with coordinates xi ∈
[1, N ], that is, � = {x ∈ NN | xi ∈ [1, N ]}. For the elements
in �, we use the vector notation, that is x = (x1, . . . , xN). The
partial order that we choose on such a set is given by

∀x, w ∈ �, x�w if xi �wi ∀i. (9)

As a consequence, the join and the meet between any two
elements x, w ∈ � are given by v = x�w if vi = max{xi, wi},
and v = x�w if vi = min{xi, wi}. With this choice,we have∨

� = (N, . . . , N) and
∧

� = (1, . . . , 1). The pair (�, �) with
the order defined by (9) is clearly a lattice. The set U is the set
of all permutations of N elements and it is a subset of �. All of
the elements in U form an anti-chain of the lattice, that is, any
two elements of U are not related by the order in (�, �). In the
sequel, we will denote by w any variable in � not specifying if
it is in U, and we will denote by � any variable in U.

The function h : perm(N) × RN → RN can be naturally
extended to � as

zi(k + 1) = zi(k) + � if zi(k) < xwi(k),

zi(k + 1) = zi(k) − � if zi(k) > xwi(k) (10)

for w ∈ �. The rules (10) specify h̃ : � × RN → RN , and one
can check that h̃|U×Z = h. In analogous way f : perm(N) ×
RN → perm(N) is extended to � as

(wi(k + 1), wi+1(k + 1)) = (wi+1(k), wi(k))

if xwi(k) �zi+1(k) ∧ xwi+1(k) �zi+1(k), (11)

for w ∈ �. The rules (11) model the function f̃ : � × RN → �,
and one can check that f̃ |U×Z = f . Therefore, the sys-
tem �̃ = (f̃ , h̃, �, RN) is the extended system of � =
(f, h, perm(N), RN) (see Definition 4.2). One can show that
the pair (�̃, (�, �)) is interval compatible (the proof can be
found in Del Vecchio, 2005).

The estimator �̂ = (� × �,Z×Z, � × �, (f1, f2), id) given
in Theorem 4.1 can be constructed because the hypotheses of
the theorem are satisfied. The estimator �̂ can be specified by
the following rules:

li (k + 1) = i + 1 if zi(k + 1) = zi(k) + �, (12)

li (k + 1) = 1 if zi(k + 1) = zi(k) − �, (13)

Li,y(k + 1) = max{Li(k), li(k + 1)}, (14)

(Li(k + 1), Li+1(k + 1)) = (Li+1,y(k + 1), Li,y(k + 1))

if xLi,y (k+1) �zi+1(k) ∧ xLi+1,y (k+1) �zi+1(k), (15)

ui(k + 1) = N if zi(k + 1) = zi(k) + �, (16)

ui(k + 1) = i if zi(k + 1) = zi(k) − �, (17)

Ui,y(k + 1) = min{Ui(k), ui(k + 1)}, (18)

(Ui(k + 1), Ui+1(k + 1)) = (Ui+1,y(k + 1), Ui,y(k + 1))

if xUi,y (k+1) �zi+1(k) ∧ xUi+1,y (k+1) �zi+1(k) (19)

initialized with L(0)=∧
� and U(0)=∨

�. Rules (12)–(13) and
(16)–(17) take the output information z and set the lower and up-
per bound of Oy(k), respectively. Rules (14) and (18) compute
the lower and upper bound of the intersection [L(k), U(k)] ∩
Oy(k), respectively. Finally, rules (15) and (19) compute the
lower and upper bound of the set f̃ ([L(k), U(k)] ∩ Oy(k)),
respectively.

5.2. Complexity of the RoboFlag Drill estimator

The amount of computation required for updating L and U
according to (12)–(19) is proportional to the amount of com-
putation required for updating the variables � in system �. In
fact we have 2N rules, 2N variables, and 2N computations of
“max” and “min” of values in N, in which N is the number of
robots. Therefore, the complexity of the algorithm that gener-
ates the sequences L(k) and U(k) is proportional to N, i.e., it
is the same as the complexity of the algorithm that generates
the � trajectories. Also, note that the rules in (12)–(19) are ob-
tained by “copying” the rules in (11) and correcting them by
means of the output information, according to how the Kalman
filter or the Luenberger observer are constructed for dynami-
cal systems (see the seminal paper by Kalman, 1960, and by
Luenberger, 1971).

As established by property (iii) of Problem 1, the function
of k given by |[L(k), U(k)] ∩ U − �(k)| tends to zero. This
function is useful for analysis purposes, but it is not necessary
to compute it at any point in the algorithm proposed in Eqs.
(12)–(19). However, since L(k) does not converge to U(k), once
the algorithm has converged, i.e., when |[L(k), U(k)]∩U|=1,
we cannot find the value of �(k) from the values of U(k) and
L(k) directly. Instead of computing directly [L(k), U(k)] ∩
U, we carry out a simple algorithm, that in the case of the
RoboFlag Drill example takes at most (N2 + N)/2 steps and
takes as inputs L(k) and U(k) and gives as output �(k) if
the algorithm has converged. This is formally explained in the
following paragraph.

Refinement algorithm. Let ci = [Li, Ui]. Then the algorithm

(m1, . . . , mN) = Refine(c1, . . . , cN),

which takes assignment sets c1, . . . , cN and produces assign-
ment sets m1, . . . , mN , is such that if mi = {k} then k /∈ mj for
any j 
= i.
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Fig. 8. Example with N = 30: note that the function W(k) is always non-
increasing and its logarithm is converging to zero.

This algorithm takes as input the sets mi and removes single-
tons occurring at one coordinate set from all of the other coor-
dinate sets. It does this iteratively: if in the process of removing
one singleton, a new one is created in some other coordinate
set, then such a singleton is also removed from all of the other
coordinate sets. The refinement algorithm has two useful prop-
erties. First, the sets mi are equal to the �i when [L, U ]∩U=�.
Second, the cardinality of the sets mi(k) is nonincreasing with
the time step k. A formal proof of these properties can be found
in Del Vecchio (2005).

The case in which the robots are in a space with dimension
higher than one, for example zi ∈ R3, is an interesting case
to explore. In principle, nothing in the estimation algorithm
structure would change provided that the direction of motion
of a defender defines a set of possible attackers to which it is
assigned to.

5.3. Simulation results

The RoboFlag Drill system represented in rules (2)–(4) has
been implemented in MATLAB together with the estimator
reported in the rules (12)–(19). Fig. 3 in Section 2 showed the
behavior of the quantities V (k)=|[L(k), U(k)]∩U| and E(k)=
(1/N)

∑N
i=1|�i (k)−i|. V (k) represents the cardinality of the set

of all possible assignments at each step. This quantity gives an
idea of the convergence rate of the estimator. E(k) is a function
of �, and it is not increasing along the executions of the system
�=S(perm(N), RN, f, h). This quantity is showing the rate of
convergence of the � assignment to its equilibrium (1, . . . , N).
In Fig. 8, we show the results for N = 30 robots per team. In
particular, we report the log of E(k) and the log of W(k) defined
as W(k) = (1/N)

∑N
i=1|mi(k)|, which is non increasing and

converging to one, that is the sets (m1(k), . . . , mN(k)) converge
to �(k)=(�1(k), . . . , �N(k)). In the same figure, we notice that

when W(k) converges to one, E(k) has not converged to zero
yet. This suggests that the estimator is faster than the dynamics
of the system under study. We cannot explain such a good
performance formally yet, and the estimator speed issue will
be addressed in future work.

In the previous sections, we proposed an estimator �̂= (�×
�,Z × Z, � × �, (f1, f2), id) on a lattice (�, �) for a DTS
� = S(U,Z, f, h) with U ⊆ �. Such an estimator can be
constructed if the system � is observable and if the extended
system �̃ = S(�,Z, f̃ , h̃) is such that the pair (�̃, (�, �)) is
interval compatible. In the next section, we investigate when the
pair (�̃, (�, �)) is interval compatible, and what are possible
causes of the estimator complexity.

6. Extensions to basic results

In this section, we give a characterization of what observable
means in terms of extensibility of a system into an extended
system that is interval compatible with a lattice (�, �). We
show that if the system �=S(U,Z, f, h) is observable, there
always exists a lattice (�, �) such that the pair (�̃, (�, �))

is interval compatible. The worst case size of the lattice is
computed, which gives a computational burden equivalent to
the observer tree approach. The main advantage of this method
from a computational standpoint is clear when a lattice with
algebraic structure can be found, in which the sup and inf can be
computed exploiting the algebra. Thus, we show a possible way
of constructing the estimator on a chosen lattice by constructing
a nondeterministic extension of � on �. The previous section
results are then generalized to nondeterministic systems.

6.1. Estimator existence

For the deterministic transition system � = S(U,Z, f, h),
the �-transition sets and the �-transition classes are defined as
for the extended system �̃ =S(U,Z, f̃ , h̃) in Definitions 4.3
and in 4.4, respectively, by replacing �̃ = S(�,Z, f̃ , h̃) with
� = S(U,Z, f, h). Each �-transition set T(z1,z2)(�) contains
all of � values in U that allow the transition from z1 to z2

through the function h. Note also that for any z1, z2 ∈ Z we
have T(z1,z2)(�) ⊆ T(z1,z2)(�̃) because h̃|U×Z = h and U ⊆ �.

This in turn implies that Ti (�) ⊆ Ti (�̃).
We also assume that all of the executions contained in the

�+-limit set of �, �(�), are distinguishable. More formally we
have:

Assumption 6.1. The �+-limit set of � = S(U,Z, f, h),
�(�), is such that for any two different executions �1, �2 with
�1(0), �2(0) ∈ �(�) there is k ∈ N such that �1(k)(z) 
=
�2(k)(z).

Lemma 6.1. Consider the deterministic transition system � =
S(U,Z, f, h). Let �(�) verify Assumption 6.1. Then � is
observable if and only if f : (Tj (�), z) → f (Tj (�), z) is
one to one for any j ∈ {1, . . . , M} and for any z ∈ Z.
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Fig. 9. Example of the � and �̃ transition classes with U (dark elements)
composed of three elements.

The proof of this lemma can be found in Del Vecchio
(2005). This lemma shows that observability can be deter-
mined by checking if the function f is one to one on the
�-transition classes Tj (�), provided that the executions
evolving in �(�) are distinguishable. This lemma is used in
the following theorem, which gives an alternative characteri-
zation of what observable means in terms of extensibility of
the system � into a system �̃ that is interval compatible with a
lattice (�, �).

Theorem 6.1 (Observability on bounded lattices). Consider
the deterministic transition system � = S(U,Z, f, h). Let
�(�) verify Assumption 6.1. Then the following are equivalent:

(i) System � is observable.
(ii) There exist a complete lattice (�, �) with U ⊆ �, such

that the extension �̃ = (f̃ , h̃, �,Z) of � on � is such that
(�̃, (�, �)) is interval compatible.

Proof. ((i) ⇒ (ii)) We show the existence of a lattice (�, �)

and of an extended system �̃=S(�,Z, f̃ , h̃) with (�̃, (�, �))

an interval compatible pair by construction. Define � := P(U),
and (�, �) := (P(U), ⊆).

To define h̃, we define the sublattices (Ti (�̃), �) of (�, �)

for i ∈ {1, . . . , M}, by (Ti (�̃), �) := (P(Ti (�)), ⊆) as
shown in Fig. 9. As a consequence, for any given z1, z2 ∈ Z
such that z2 = h(�, z1) for � ∈ Ti (�) for some i, we define
z2 = h̃(w, z1) for any w ∈ Ti (�̃). Clearly, h̃|U×Z = h, and
Ti (�̃) for any i is an interval sublattice of the form Ti (�̃) =
[⊥,

∨
Ti (�̃)].

The function f̃ is defined in the following way. For any
x, w ∈ � and � ∈ U we have
⎧⎪⎪⎪⎨
⎪⎪⎪⎩

f̃ (x�w) = f̃ (x)�f̃ (w),

f̃ (x�w) = f̃ (x)�f̃ (w),

f̃ (⊥)= ⊥,

f̃ (�) = f (�),

(20)

where we have omitted the dependency on the z variables
for simplifying notation. We prove first that f̃ : Ti (�̃) →
[⊥, f̃ (

∨
Ti (�̃))] is onto. We have to show that for any

w 
=⊥∈ [⊥, f̃ (
∨

Ti (�̃))] there is x ∈ [⊥,
∨

Ti (�̃)] such
that w=f̃ (x). Since

∨
Ti (�̃)=�1� · · · ��p for {�1, . . . , �p}=

Ti (�), we have also that f̃ (
∨

Ti (�̃)) = f (�1)� · · · �f (�p)

by virtue of Eqs. (20). Because w� f̃ (
∨

Ti (�̃)), we have
that w = f (�j1)� · · · �f (�jm) for jk ∈ {1, . . . , p} and m < p.
This in turn implies, by Eqs. (20), that w = f̃ (�j1� · · · ��jm).
Since x := �j1� · · · ��jm <

∨
Ti (�̃), we have proved that

w = f̃ (x) for x ∈Ti (�̃). Second, we notice that f̃ : Ti (�̃) →
[⊥, f̃ (

∨
Ti (�̃))] is one to one because of Lemma 6.1. Thus,

we have proved that f̃ : Ti (�̃) → [⊥, f̃ (
∨

Ti (�̃))] is a
bijection, and by Eqs. (20) it is also an homomorphism. We
then apply Proposition 1 to obtain the result.

((ii) ⇒ (i)). To show that (ii) implies that �=S(U,Z, f, h)

is observable, we apply Lemma 6.1. In particular, (�̃, (�, �))

being interval compatible implies that f̃ :Ti (�̃)→[f̃ (
∧

Ti (�̃)),

f̃ (
∨

Ti (�̃))] is one to one for any i. This, along with
Assumption 6.1, by Lemma 6.1 imply that the system is
observable. �

This result links the property of a pair (�̃, (�, �)) being in-
terval compatible with the observability properties of the orig-
inal system �.

Theorem 6.1 shows that an observable system admits a lat-
tice and a system extension that satisfy interval compatibility
by constructing them, in a similar way as one shows that a
stable dynamical system has a Lyapunov function. However,
the constructed lattice is impractical for the implementation of
the estimator of Theorem 4.1 when the size of U is large be-
cause the size of the representation of the elements of � is large
as well. The worst case size of � is computed by the following
proposition.

Proposition 2. Consider the system � = S(U,Z, f, h), with
f : U → U. Assume that the sets {T1(�), . . . ,Tm(�)} are
all disjoint. Then |�|�2|U|2.

The proof of this proposition can be found in Del Vecchio
(2005). The size of � gives an idea of how many values of
joins and meets need to be stored. In the case of the RoboFlag
example with N = 4 robots per team, the size of P(U) is
16 778 238, while the worst case size given in Proposition 2
is 576, and the size of the lattice � proposed in Section 5.1 is
44 = 256. Thus, the estimate given by Proposition 2 signifi-
cantly reduces the size of � given by P(U). Note that the size of
the lattice proposed in Section 5.1 is smaller than 576, because
there are pairs of elements that have the same join, for exam-
ple the pairs (3, 1, 4, 2), (4, 2, 1, 3) and (4, 2, 1, 3), (2, 1, 4, 3)

have the same join that is (4, 2, 4, 3).

This proposition shows that the worst case computation
needed for implementing our estimator is the same as the
one needed in Caines et al. (1991), where the observer tree
method is proposed. The main advantage of this method is
clear when the space of discrete variables can be immersed in
a lattice whose order relations can be computed algebraically
((�, �) does not need to be stored). We then consider the
case in which there is a preferred lattice structure (�, �) in
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which the order relations can be computed algebraically, but
there is no system extension �̃ such that the pair (�̃, (�, �))

is interval compatible. We thus look for an over-approximation
of the system � that might be interval compatible with the
desired lattice (�, �). Such an over-approximation is called a
weakly equivalent generalization and is defined the following
way.

Definition 6.1. Consider the deterministic transition system
�=S(U,Z, f, h). We define �� =S(U� ,Z, f� , h) to be
a �-weakly equivalent generalization of � on U� with U ⊆
U� if

(i) E(�) ⊆ E(�� ).
(ii) Any ��� ∈ E(�� ) such that {��� (k)(z)}k∈N =

{��(k)(z)}k∈N, for some execution �� ∈ E(�), is such
that ��� ∼ ��.

Item (i) establishes that �� is a generalization of �, de-
noted � ⊆ �� . Moreover, (ii) establishes that those execu-
tions of �� that have the same output sequence as one of the
executions, ��, of � are equivalent to ��. As a consequence,
if the system � is observable (or weakly observable), its �-
weakly equivalent generalization �� is weakly observable on
the set of executions of �. For weakly observable systems, The-
orem 4.1 can be applied by substituting the assumption of the
pair (�̃, (�, �)) being interval compatible with a weaker as-
sumption that we call weak interval compatibility defined as
follows.

Definition 6.2 (Weak interval compatibility). Consider the ex-
tended system �̃ = S(�,Z, f̃ , h̃) of � = S(U,Z, f, h) on
(�, �). The pair (�̃, (�, �)) is said to be weakly interval com-
patible if

(i) Each �̃-transition class, Ti (�̃) ∈ T(�̃), is an interval
sublattice of (�, �), i.e., Ti (�̃) = [∧Ti (�̃),

∨
Ti (�̃)].

(ii) f̃ : ([L, U ], z) −→ [f̃ (L, z), f̃ (U, z)] is order preserving
for any [L, U ] ⊆ Ti (�̃), and any z ∈ Z and for any
i ∈ {1, . . . , M}.

(iii) f̃ : ([L, U ], z) −→ [f̃ (L, z), f̃ (U, z)] is onto for any
[L, U ] ⊆ Ti (�̃) for any z ∈ Z and for any i ∈
{1, . . . , M}.

We have a difference between observable systems and weakly
observable systems because in a weakly observable system, two
executions sharing the same output can collapse one onto the
other, thus there cannot be any extension f̃ that is a bijection
between the output lattice and the set it is mapped to. Thus, we
can restate Theorem 4.1 for weakly observable systems in the
following way.

Theorem 6.2. Assume that the deterministic transition system
� = S(U,Z, f, h) is weakly observable. If there is a lat-
tice (�, �), such that the pair (�̃, (�, �)) is weakly inter-
val compatible, then the deterministic transition system with

input �̂ = (� × �,Z × Z, � × �, (f1, f2), id) with

f1(L(k), y(k), y(k + 1)) = f̃
(
L(k)�

∧
Oy(k), y(k)

)
,

f2(U(k), y(k), y(k + 1)) = f̃
(
U(k)�

∨
Oy(k), y(k)

)

solves Problem 1.

If we can find a �-weakly equivalent generalization �� for
� that is weakly interval compatible with the desired lattice �,
we can construct the estimator for the system � by using �� .
This is formally stated in the following proposition.

Proposition 3. If the system � = S(U,Z, f, h) is observ-
able (or weakly observable) and its �-weakly equivalent
generalization �� = S(U� ,Z, f� , h) is such that the pair
(�̃� , (�, �)) is weakly interval compatible for a given (�, �)

and U� ⊆ �, then Theorem 6.2 can be applied to �� with
�(k) = ��(k)(�) and z(k) = ��(k)(z).

This way, we construct the estimator using f� , but we esti-
mate the value of � corresponding to the execution of � whose
output z we are measuring. The proof of this proposition can be
carried out easily by using directly (i) and (ii) of Definition 6.1.
The counterpart is that if the �-weakly equivalent generaliza-
tion is a too rough over-approximation of �, the convergence
speed can be low.

A way for constructing a �-weakly equivalent generalization
of � is to find a nondeterministic function f� : U × Z →
P(U) such that if �(k) = ��(k)(�) and z(k) = ��(k)(z), then
�(k + 1) ∈ f� (�(k), z(k)). f� maps an element to a set of
possible values in U, and U� =U. We show in the following
section how the notion of interval compatible pair generali-
zes to nondeterministic systems, and how the result given in
Theorem 4.1 modifies.

6.2. Nondeterministic transition systems

In this section, we outline the basic ideas that allow us to
generalize the results of Section 4 to nondeterministic transition
systems. The main difference with the deterministic case is that
the function f maps one element to a set. In general, this feature
may be due to model uncertainty, to noise on the dynamics, or
to uncertainty on the sequence of events in a concurrent system.
As a consequence, the extension f̃ cannot be a bijection. It
maps the lower and upper bounds L and U to two sets. This
way, it is not clear any more how to establish update rules of
the kind of the ones in Theorem 4.1. In this section, we propose
a solution to this problem.

Definition 6.3 (Nondeterministic transition systems). A non-
deterministic transition system (NTS) is the tuple � =
(S,Y, F, g), where (i) S is a set of states with s ∈ S; (ii) Y is
a set of outputs with y ∈ Y; (iii) F : S → P(S) is the state
transition set-valued function; (iv) g : S → Y is the output
function.
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An execution of � is any sequence � = {s(k)}k∈N such that
s(0) ∈ S and s(k + 1) ∈ F(s(k)) for all k ∈ N. As opposed to
a DTS, in an NTS F maps an element to a set, and thus it is
a set-valued function. The Definitions 3.2, 3.5, and 3.6, which
are related with the weak observability property, can be rewrit-
ten the same way for NTSs by replacing “deterministic tran-
sition system” with “nondeterministic transition system”, and
by taking that F is a set-valued map into account. As done for
deterministic transition systems, we consider nondeterministic
transition systems with the special structure (i) S = U × Z
with U a finite set and Z a finite dimensional space; (ii)
F = (f, h), where f : U × Z → P(U) and h : U × Z →
Z; (iii) g(�, z) := z, where � ∈ U, z ∈ Z, and Y = Z.
We denote this class of nondeterministic transition systems by
�=S(U,Z, f, h), and we associate to the tuple (U,Z, f, h)

the equations

�(k + 1) ∈ f (�(k), z(k)),

z(k + 1) = h(�(k), z(k)),

y(k) = z(k), (21)

if f is a set-valued map. Given a lattice (�, �) with U ⊂ �, the
extension �̃ = S(�,Z, f̃ , h̃) of � is defined in a way similar
to the way it is defined for deterministic transition systems (see
Definition 4.2), but in this case �̃ is nondeterministic itself and
U is allowed to be not invariant under f̃ .

Definition 6.4. Given the nondeterministic transition system
� = S(U,Z, f, h), a N-extension of � on �, with U ⊆ � and
(�, �) a complete lattice, is any system �̃ = S(�,Z, f̃ , h̃),
such that (i) f̃ : � ×Z → P(�) and f̃ |U×Z ∩P(U) = f ; (ii)
h̃ : � × Z → Z and h̃|U×Z = h.

The definition of interval compatible pair changes to the
following definition.

Definition 6.5. Consider the N-extension �̃ = S(�,Z, f̃ , h̃)

of the nondeterministic transition system � = S(U,Z, f, h)

on (�, �). The pair (�̃, (�, �)) is said to be N-interval
compsatible if

(i) Each �̃-transition class, Ti (�̃) ∈ T(�̃), is an interval
sublattice of (�, �), i.e., Ti (�̃) = [∧Ti (�̃),

∨
Ti (�̃)].

(ii) f̃ : ([L, U ], z) −→ [∧ f̃ (L, z),
∨

f̃ (U, z)] is order pre-
serving for any [L, U ] ⊆ Ti (�̃), and any z ∈ Z and for
any i ∈ {1, . . . , M}.

(iii) f̃ : ([L, U ] ∩ U, z) −→ [∧ f̃ (L, z),
∨

f̃ (U, z))] ∩ U is
onto for any [L, U ] ⊆ Ti (�̃) for any z ∈ Z and for any
i ∈ {1, . . . , M}.

Note that for a set-valued function f, we have that f : A →
B is onto if for any element b ∈ B there is an element a ∈ A

such that b ∈ f (a). The notions of observability and of weak
observability remain the same as the ones in the deterministic
case. Thus, Theorem 4.1 transforms to the following.

Theorem 6.3. Assume that the nondeterministic transition sys-
tem � = S(U,Z, f, h) is weakly observable. If there is a

lattice (�, �), such that the pair (�̃, (�, �)) is N-interval
compatible, then the deterministic transition system with input
�̂ = (� × �,Z × Z, � × �, (f1, f2), id) with

f1(L(k), y(k), y(k + 1)) =
∧

f̃
(
L(k)�

∧
Oy(k), y(k)

)
,

f2(U(k), y(k), y(k + 1)) =
∨

f̃
(
U(k)�

∧
Oy(k), y(k)

)

solves (i) and (iii) of Problem 1.

In Theorem 6.3, we assume that the system is weakly ob-
servable as opposed to observable as assumed in Theorem 4.1,
and the functions f1 and f2 are modified by taking that f (·) is
a set into account. Also, (ii) of Problem 1 cannot be guaranteed
because f̃ maps an element to a set. The proof of this theorem
proceeds the same way as the proof of Theorem 4.1. The basic
idea of Theorem 6.3 is the same as the one of the determinis-
tic counterpart, except that in the present case L(k) and U(k)

are mapped to sets. As a consequence, the update laws in The-
orem 6.3 take track of the lower and upper bounds of the sets
to which L(k) and U(k) are respectively updated.

7. Conclusions and future work

In this paper, we have presented a novel approach to the
estimation of discrete variables in systems where the contin-
uous variables are available for measurement. Using lattice
theory, we developed a discrete state estimator that updates
two variables at each step, the upper and the lower bound of
the set of all possible discrete states compatible with the out-
put sequence. This way, we were able to overcome some of
the severe complexity issues that arise in discrete state esti-
mation methods based on the current observation tree such
as is found in Caines et al. (1991), Balluchi et al. (2002),
and Özveren and Willsky (1990), or in similar methods such
as in Del Vecchio and Klavins (2003). In fact, these meth-
ods update the set of all possible discrete states compatible
with the output sequence by updating each of the elements
of the set; therefore, the computation need is prohibitive for
systems in which the set of discrete states is large. We were
able to overcome this problem by representing a set by its
lower and upper bounds in some lattice, and by determin-
ing the updated set by the updates of its lower and upper
bounds.

It was also shown that the proposed estimation approach
is general as it applies to any observable system. The main
advantage from a computational standpoint of using this ap-
proach is clear when a lattice with algebraic structure can
be found, in which min and max can be computed exploit-
ing the algebra. The existence of such a “good” lattice is of-
ten related to the way the system is described. For example,
it can be shown that all discrete event systems described as
Petri nets evolve on a partial order that is preserved by the
dynamics of the system, and for any system the causal order
relation is always preserved along its trajectories. These state-
ments need to be formalized in order to give a clear idea of
the set of systems in which the proposed approach successfully
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applies to reduce complexity. This will be investigated in our
future work.

Many more aspects need to be still improved upon. More
work needs to be done in order to formally identify the types of
lattices that allow efficient computation and representation of
joins and meets. In the case of a finite state machine, we would
like to determine how to find the minimal lattice and what is
the complexity of its computation. An other major challenge for
our future work is to extend these results to the case in which
also the continuous variables need to be estimated. In the case
of the proposed multi-robot example, this would correspond
to having more interesting evolutions of the robots continuous
dynamics. The possibility of constructing a joint continuous-
discrete variable lattice will be explored. Initial results in this
direction can be found in Del Vecchio and Murray (2005).
Finally, research needs to be done in order to establish how to
close the loop for control on a lattice.
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