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Abstract

Signaling pathways consisting of phosphorylati@phosphorylation (PD) cycles
with no explicit feedback allow signals to propagate notydinbm upstream to
downstream but also from downstream to upstream due tcactiviy at the inter-
connection between PD cycles. However, the extent to whiwanstream pertur-
bation can propagate upstream in a signaling cascade apditmeters thatiect
this propagation are presently unknown. Here, we deterithi@eownstream-to-
upstreamsteady state gain at each stage of the signaling cascadeuasteif
of the cascade parameters. This gain can be made smalled tfettenuation)
by suficiently fast kinase rates compared to the phosphataseamatks by suf-
ficiently large Michaelis-Menten constants andfsiently low amounts of total
stage protein. Numerical studies performed on sets of gicddly relevant param-
eters indicated that about 50% of these parameters cowddigi to amplification
of the downstream perturbation at some stage in a 3-stagadm®sIn am-stage
cascade, the percentage of parameters that lead to anl@tezaliation from the
last stage to the first stage monotonically increases wétcéscade length and
reaches 100% for cascades of length at least 6.

Key words: Signaling, mathematical model, numerical simulation, |Gl
derivations
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Introduction

Signaling pathways are ubiquitous in living systems ancec@vcentral role in a
cell’s ability to sense and respond to both external andnatenput stimuli (1, 2).
Numerous signaling pathways consist of cycles of revagibbtein modification,
such as phosphorylatitdephosphorylation (PD) cycles, wherein a protein is re-
versibly converted between two forms (3). Multiple PD cgctdten appear con-
nected in a cascade fashion, such as in the MAPK cascade}l &hdbthe length
of the cascade has been shown to have importgietts, for example, on signal
amplification, signal duration, and signaling time (6—8).plrticular, a wealth of
work has been employing metabolic control analysis (MCAjrapches to analyt-
ically determine the amplification gains across the caseadesmall perturbation
applied at the top of the cascade propagates toward thetbsteges (8—-10). No
study has been performed on how perturbations at the bott@cascade propa-
gate toward the top of the cascade.

Since cascades often intersect each other by sharing cocongronents, such
as protein substrates or kinases (11, 12), perturbatiobsteam or intermediate
stages in a cascade can often occur. These intersectioakeady known to cause
unwanted crosstalk between the signaling stages downstoédhe intersection
point (13-16). However, no attention was given to crossketween the stages
upstream of the intersection point. Several of these wankact, viewed a signal-
ing cascade as the modular composition of PD cycles, raguhia system where
the signal travels onljrom upstream to downstreanTheoretical work, however,
has shown that PD cycles (as several other biomolecularag3tcannot be modu-
larly connected with each other because of retroactiityots at interconnections
(17-22). Initial experimental validation of thes@ezts on the steady state response
of a PD cycle have also appeared (23-25). Thékets change the behavior of
an upstream system when it is connected to its downstreamtland are relevant
especially in signaling cascades, in which each PD cycleshasral downstream
targets. As a result of retroactivity, signaling cascadkesvesignals to also travel
from downstream to upstrearthat is, they allow bidirectional signal propagation
(22, 26). As a consequence, a perturbation at the bottoneafdkcade can propa-
gate to the upstream stages and have repercussions on th# sigmaling.

A perturbation at the bottom of a cascade can be due to a nuofliectors.
For example, when a downstream target or a substrate isdshatteother signal-
ing pathways, its free concentration is perturbed by théiser pathways. Hence,
the amount of targégtubstrate available to the cascade under study can suddenly
change. Similarly, the introduction of an inhibitor of artiee enzyme, as per-
formed in targeted drug design, creates a perturbationeatatigeted stage of the
cascade. How large is thé&ect of such perturbations on the upstream stages? How
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does the length of a cascade impact backward signal tr&$erthe one hand,
answering these questions will reveal the extent by whi@trabt signaling in the
upstream stages of a cascade can be caused by retroaatinitysharing down-
stream targetsubstrates. On the other hand, it will provide tools for¢ted drug
design by quantifying thefBitarget éfects of inhibitors on the upstream stages.

In this paper, we address these questions in cascades withla phospho-
rylation cycle per stage by explicitly incorporating retotivity in the PD cycle
model. Specifically, we consider small perturbations atibgom of the cascade
and explicitly quantify for the first time how such pertuiibbats propagate from
downstream to upstream. Our main results are as follows. ikede analytical
expressions for the downstream-to-upstream transmiggmors. These establish
the extent to which a perturbation at the bottom of the cascath propagate up-
stream and provide flicient conditions for attenuation. Through extensive nu-
merical simulation, we discovered that, surprisingly,unalt cascades can amplify
a perturbation as it propagates upstream, but the protyabflattenuation is sub-
stantially higher than that of amplification. Also, the pabllity of attenuation
increases with the number of stages in the cascade.

Methods

We consider a signaling cascade composedafosphorylatiofdephosphorylation
(PD) cycles as depicted in Figure 1. The sensitivity of resgoto perturbations
occurring at the top of the cascade, for exampM/jy has been extensively studied
employing MCA approaches (8—10). By contrast, here we ligat® the sensitiv-
ity of response of each cycle to a perturbation at the bottbtheocascade. This
perturbation can be due, for example, to an inhibitor of tbévea enzyme VY,

as it is employed in targeted drug design (27) or to the siggdfom another
pathway sharing a substrate with;WOur method is based on assuming a small
perturbation, on linearizing the system dynamics aboustbady state, and on de-
termining the corresponding change of each cycle phostdted, protein. Since
our approach is based on linearization, it is similar inispir MCA approaches,
which also assume small perturbations and linearize theersydynamics. Here,
we are interested in determining hodfextively the perturbation propagates up-
stream. We thus explicitly compute the sensitivity gainrfrone stage to the next
upstream as a function of the cascade parameters.
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Cascade Model

At each stage, fori € {1,...,n}, we denote by W, the kinase, by Fthe phos-
phatase, by \Wthe protein substrate, and by;Vthe phosphorylated form of W
The kinase W , binds to W to form the substrate-kinase complex Xhis com-
plex then turns into W. The phosphorylated protein ;\Ws in turn a kinase for
the next cycle and binds to downstream substrates, forrhnmgamplex X.1. The
phosphatase;j&ctivates the dephosphorylation of the proteifilyy binding to W
and forming the complex Y This complex is in turn converted to;WWe employ
the following two-step reaction model for each phosphdiyteand dephosphory-
lation reaction (28, 29) at stage {1, ..., n} of the cascade:
. K\ x
Wi+W_; = Xj > W +W;_,;
EY
bi ki
Wi*+Ei —T_\Yi - W;+E.
bi
We assume that protein Vind phosphatase Bre conserved at every stage, and
are in total amount®Vit andE;jr, respectively. Therefore, we have the conservation
relations

W+ W+ X + Y+ Xier = W
Ei +Yi = Er, (1)

in which for a species X we have denoted Ky(italics) its concentration. We
assume that the input kinase to the first stagg, W produced at rat&(t) and
decays at raté, that is,
. O

W, © 0.
Finally, we assume that the output protein of the last stéfje reacts with species
D downstream of the cascade. These species D can modelaimipé, a signaling
molecule or an inhibitor of the active enzyme;\(& drug) such as considered in
targeted drug design (27), in which the total concentratib® can be perturbed,
for example, by adding more drug. Species D can also modebstrsie that is
shared with other signaling pathways. In this case, D is astsate for another
active enzyme, say S, whose concentration is controllechbthar signaling cas-
cade. Hence, the amount of free D plus the amount of D bound;tonhich we
call DT, can be perturbed (it can increase or decrease) by a chatige ¢oncen-
tration of the active enzyme S. Denoting by X the complex formed by Wand
D, we have that

an+ .
W + D == X1 With Dy 2 D + Xps1.
an-+—1
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In this study, we consideDt as the parameter to be perturbed and calculate the
sensitivity of the steady state response of each cycleegptitein to small pertur-
bations inDr.

The diferential equations that describe the dynamics of the casaadgiven,
fori e {1,...,n}, by

Wy = —oW +k(t) — | (@aWiWi — (31 + K1) X1)
X = aW W - @ + k)X,
W = kX —bWE + DY —| (@1 W Wiyt — @1 + i) Xis1)

Yi = bWE - (b +k)Y;
Wy = knXn — oWy En + BuYn — | (@0:1 DW; — BneaXnen) |
Xn+l = an:1DW, — @ne1 Xng

Recognizing that the terms in the boxes correspori; 1o, 1, andX,, 1, respec-
tively, and employing the conservation law (1), we obtainife {1, ..., n} that

W, = —6W; +k(t) —
Xi = aW (W — W' =X - Y — Xiz1) — @ + k)X
\)\/i* = kX — biVVi*(EiT - Y.) + B|Y| - Xi+l (2)

Y, = bW(Er - Y) - (b + k)Y
Xnert = Ane1(D1 = Xne )W) — @1 Xng-

Perturbation Analysis

In this section, we consider the cascade to be at the steat@yastd investigate how

a small perturbation in the concentrati®t perturbs the steady state concentra-
tions at every stage of the cascade. We denote the steaglyaiia¢ of the upstream
inputk(t) by k and that oDt by Dt. The corresponding equilibrium values of the
protein concentration®/;, W, X;, Y;, W, fori € {1,...,n}, andX,,, are denoted
by W, Wi, Xi, Yi, Wi, for i € {1,...,n}, andXp,1, respectively. We represent the
perturbation ofDt with respect to its steady state valuedsy:= Dt — Dt. Note
that if dr > 0, the downstream perturbation is positive, that is, thecentration

Dt increases. If insteady < 0, the downstream perturbation is negative, that is,
the concentratioDt decreases. Hence, both positive and negative perturbation
are considered. The correspondlng perturbations of thesstd the cascade about
the equilibrium vaIueSNo, WI , Xi, Yi, fori € {1,...,n}, andX,,1 are denoted by
Wy, W, X, ¥, fori € {1,...,n}, andXq.1, respecnvely Similarly, denote 1 for
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i € {1,...,n} the concentration of th®tal phosphorylated protein at stagethat
is, Zi == W* + Y + Xi;1. Denote the corresponding perturbation about the steady
stateZ; = W, + Y; + Xi,1 by z, which can be written ag = W +Y; + X for all
ie{l,..n}.

The linearization of system (2) about the equilibritg, W;, X;, ¥i, andXp.1,
fori e {1,...,n}is given by

\/'\[8 = —5\/\/6 - X
% = aWiWe_; + & Wi (—W — % — i — Xi1) — (& + k)X
v'\[i* =KX + biV_Vryi — biEi\l\fik + Eiyi — Xis1 (3)

yi = —biWi*yi + blﬁl\’\[;k - (EI + E)M
Xn+1 = Bns1 DW) — 8ni1 Wi Xnst — BnriXne1 + Bns1 Widr,

in which we have for € {1, ..., n} that (from setting the time derivatives in equations
(2) equal to zero)

— k
Wy = 5 4)
W, = Kiﬁ_*i_[l+ ﬁ] _V\f ©))
ki W, +K; Ki JW, ;
v, = — T (6)
1+K/W,
_ k—
Xi = ﬁYi’ (7)

in which K := b'bLIR' is the Michaelis-Menten constant of the dephosphorylation
reaction, whileK; := a‘%_'“ is the Michaelis-Menten constant of the phosphorylation
reaction.
Since we are interested in the steady state valueg,ofre set the time deriva-
tives to zero in system (3) to obtain
ki —
X = —Ew (8)

W o= Ti(V_ViV\fik_l—Wr_lxnl)’ 9)

Ny
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fori e {1,...,n}, in which

— KiE;i
E & T (10)
(W + Kj)?
1

Wiy + E(W_ + %(Wi*—l +Kj))

LS

Ti

(11)

Figure 2 represents relations (8) and (9) in a block diag@m fwhich highlights
the directionality of signal propagation through the stagehe cascade. Basically,
the perturbatiomr propagates upstream in the cascade through perturbatitimes i
complexesX;. Hence, in this steady state response model, retroactsvitiyie to
the complexX; of the active protein with its downstream substrate.

Results

Analytical Results

Referring to Figure 2, the perturbatiak propagates upstream through perturba-
tions x; and causes perturbatiogsandw; in the total and free phosphorylated
protein concentrations, respectively, at every stage. dowhese perturbations
transfer from one stage of the cascade to the next one upgtrieorder to answer
this question, we calculate the gains

.zl L w
D; = andV¥; := —
|Zi+1] (Y

at every stagé A gain greater than one means that small perturbationsnajpé-a
fied as they transfer from downstream to upstream, while m graialler than one
means that small perturbations are attenuated as theyerdrsn downstream to

upstream.
n-1
[ [
i=1

plication. We thus define thetal gain @ from stagento stage 1 as

n-1
Dyt = l_[ O;.
i=1

Similarly, thetotal gain¥,; from stagen to stage 1 is defined as

n-1
lPtOt = 1_[ lPi.
i=1

Since|z| = ®j|z.1|, we have thajz;| = |z,| where ‘T]” denotes multi-
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Having a total gain smaller than one means that overall tiseacke attenuates
downstream perturbations, even if some stages may ampéfpérturbation.

We first focus on the gain®; of total active protein concentration. The total
active protein concentration can be experimentally detexthby measuring pro-
tein activity through phospho-specific antibodies (30).d8wtrast, the free active
protein may be more flicult to measure. When it is an active transcription factor,
it can be measured indirectly, for example, by placing a mep@ene under the
control of the promoter that it regulates. The expressiothefgain®; at each
stagei can be explicitly calculated as a function of the cascadarpaters from
the relations in the block diagram of Figure 2 (see Sl). TR@ession is given by

E% +Fj ﬁgnl .
0 = p— —— forallie{1,..,n-1},
1+E+ EiE_' + F k‘:i Eii1+ Fis1
B +F RalE)
in whichF; andF;,; are positive quantities. Sinee——— < land—*—— <
1+Ei+EiK.I+Fi Ei+1ﬁ+Fi+l

1, we have that
O <1, forallie{l,...n-1},

Furthermore, we have that (see SI)

sign(z) = —sign(z..1) forall i € {1,....,.n— 1},

that is, an increase &1 implies a decrease &. Therefore, there is a sign rever-
sal of the perturbation on the total phosphorylated prateimcentration across the
stages and the magnitude of the perturbation at every s@afeaysattenuated as
it propagates upstream in the cascade. Thdtiiss |2] < ... < |zh-1] < |z, for all
parameter values. Furthermore, this implies also that we baerall attenuation
from downstream to upstream in the cascade, thabgjg,< 1. Since these facts
do not depend on the specific parameter values or the lendtie afascade, they
highlight a new structural property of signaling cascades.

For the perturbation on the free active protein concewinative also have that
(see SI)

signw;’) = —sign(w;, ;) for all'i € {1,...,n -1},

that is, when the perturbation’ , is positive the next upstream stage has a per-
turbationw;” with negative sign. Hence, if the downstream perturbatianses a
decrease of the active protein concentration at one staggjses an increase of the
active protein concentration in the next upstream stageexfnession of the stage
gain¥; can be calculated as a function of the cascade parametamsgsteom the
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relations of the block diagram of Figure 2. The exact expoess calculated in
the Sl and it is such that

ki+1 Ed+nr
¥ < K1 Kiy . (12)
S ] U G e
" (Kierwir)(1+5T ) TR W(' o

Therefore, one can control the amount of attenugimplification through the cas-
cade parameters as follows. The smalleftheqyr, the more the attenuation from
stage + 1 toi (i.e., the smaller the upper bound ¥hin equation (12)). Moreover,
suficiently large values oK; andK; for all i lead to an increased attenuation at
every stage. In turn, largé; andK; and smalMit are responsible for a decreased
sensitivity of the response of stag& upstream stimuli (29). As a consequence,
a more graded upstream to downstream response at all steggsociated with an
increased attenuation of downstream perturbations.

From expression (12), it also follows that aftient condition for having at-
tenuation at stageof the downstream perturbation is that

kis1 Egeyr
I<i+1 Ri+1

<1

This condition is valid for general PD cascades. Howevenai a particularly
simple meaning in the case in which the signaling pathwayeakly activated as
explained in what follows. In (6), it was found that a requient for upstream to
downstream signal amplification is that the phosphorytatiate constant should
be larger than the dephosphorylation rate constant. Foalilwactivated pathway
with Ki > Wi_yT, the phosphorylation rate constant is well approximated by
ai = kW /K; (see SI). In the case in whid; > W, the dephosphorylation
rate constant is well approximated By:= kiEir /K; (see Sl). As a consequence,
to have upstream-to-downstream signal amplification, ieguired thaty; > i,
which, whenK; > W, implies that'“ E'T < 1. This, in turn, implies tha¥j_; < 1

and hence that the downstream perturbatlon is attenuatiettassfers from stage
i to stagd —1. Hence, in weakly activated pathways in whi¢h> Wir, K; > Wi,
andK; > Wiy, upstream to downstream signal amplification is associattd
attenuation of downstream perturbations as they trangfstream. This, in turn,
implies unidirectional signal propagation from upstreanaddwnstream.

From expression (12), it also follows that a necessary tmmdior having
¥, > 1, that is, for amplifying a downstream perturbation asahgfers from stage
i +1 to stage, is that'“:1 E('_*“T > 1. This condition, in turn, in the case in which

Kz > Wi+, WispT < K.+1, andK;i,1 > Wit implies that the phosphorylation
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rate constant;,; is smaller than the dephosphorylation rate consgant As a
consequence, there is no amplification at stagel of the signal traveling from
upstream to downstream as the required condition for amatifin as determined
by (6) is violated. Hence, in weakly activated pathways inohtKi.1 > W, 1,
Kiz, > Wi+, andKiz1 > Wit if a downstream perturbation is amplified as it
propagates from stade- 1 to stage, then there is no amplification from stage
stagei + 1 for the signal traveling from upstream to downstream ipoese to a
stimulus at the top of the cascade.

From the expressions &f;, we can also derive a necessary condition for atten-
uation (see Sl). Specifically, to hallg < 1 at stage it is necessary that

E|+1 K|+1E(|+1)T
(W 1+K|+1)

)

If the necessary condition is violated at stagéhen either stage— 1 or stage
amplify the downstream perturbation. This expression eaerhployed to deter-
mine parameter values for which amplification of the dowewsstn perturbation can
result at any given stage and can be useful to determingfibaay of the &-target
effects of an inhibitor.

To conclude the analytical study, we investigate thweffectsw;, andz,. It
can be shown (see SI) that;| < |dr| and thatz,| < |dr|. That is, the perturbation
dr induces changes;, andz, aboutW:, andZ,, respectively, that are less thanin
magnitude, regardless of the parameters. Also, we haveitpgtly) = —sign(w;,)

andsign(dr) = —sign(z,).

<1 (13)

Kir1
KiEir K
1+ WK [1 + (

Numerical Results

In this section, we first illustrate the results on a thremystcascade example. We
then employ the analytically computed expressi®ngo determine the probability
that natural cascades attenuate a downstream perturlaativtransfers upstream
in the cascade. We finally study thext of the length of the cascade on the overall
gain¥. All simulations are performed on the full nonlinear modeequations
(2) in MATLAB using the built-in ODE23s solver.

Figure 3 shows how the perturbation propagates upstrearthie@-stage cas-
cade for the parameter values of (28). This Figure illusgdhat, surprisingly, the
relationship betweem; anddr is approximately linear even for large perturba-
tionsdr (up to 400 nM). Hence, the theoretical results must hold.aigular, the
values ofw; andw; are negative while the value wof; is positive. That is, the per-
turbation onW" switches sign from one stage to the next upstream. The §4ins
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calculated from the expression in the Sl for the parametereseof (28) are given
by ¥, = 2.45x 10° and¥, = 2.14 x 10°2. Since¥; and ¥, are both smaller
than 1, the cascade should attenuate the downstream eitarlat every stage.
This is confirmed by Figure 3 in which for the same valuedgf we have that
Iw’| becomes smaller and smaller as the siadcreases (i.e., as the perturbation
propagates upstream). Since the value¥;ore much smaller than 1, this three-
stage cascade practically enforces unidirectional sigmgdagation from upstream
to downstream. Note that as long as the applied perturbdiida small enough,
the relationship betweedy andw; is linear and hence all our results hold indepen-
dently of the parameter values. Additional examples féedent parameter values
are provided in the Sl.

To validate the necessary condition for attenuation atestage constructed a
parameter set that violates the necessary condition famation (13). In this case,
we should expect that at the stager which ¥; > 1, the downstream perturbation
is amplified, that isjw;| > w7, ;|. The necessary condition (13) can be violated by
choosing phosphatase amounts that increase with the staggen that isE;1 <
E,r < Egzr and substrate amounts that decrease with the stage nuinaiers,t
Wit > Wor > Wsr. We utilized these conditions and constructed a cascade
that amplifies downstream perturbations. The result is shiowFigure 4. The
resulting parameter values are still biologically meahih@s they are contained
in the parameter intervals estimated in (28). Therefoesdlcascades are capable
of also transmitting a perturbation from downstream to ngash by amplifying its
amplitude.

Do natural signaling cascades attenuate downstream pertbiations?

In order to determine the probability that a natural sigmalcascade attenuates
or amplifies downstream perturbations, we evaluated theesgn of the gains
¥, on parameters extracted with uniform probability disttibno from intervals
taken from the literature (28, 31-33). We present the resutit for a three-stage
cascade starting from conservative intervals and we pssyely reduce the size
of the intervals. In all cases, each parameter has a range amiform probability
distribution is used to sample parameters for each rangeo, Aven though the
range of parameters for each cycle is the same, in the sionsagach cycle has
different parameters (randomly picked from the given range).

Conservative intervals. In this case, we randomly chose parameters through a
uniform probability distribution from the intervals givém Table 1. The maximum
and minimum values of the intervals were chosen to be themrmaxiand minimum
of the union of the intervals defined in (28) and (31). This t®aservative way of
choosing the intervals as the parameters of (28) and (3ltpkem from dfferent
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organisms. In selecting the range fof, we assumed that D is a downstream
protein substrate and thus its interval of variation wassehoto be the same as
that forWt. We simulated the three-stage cascade 10000 times andsthitsrare
reported in Table 2. This table shows the percentage of atinnk that resulted
in ¥; < 1 for everyi € {1, 2}, that is, that resulted in attenuation at stag&he
probability of stage 1 attenuating the downstream pertioias 7134% and the
probability of stage 2 attenuating it is 55%. Moreover, sititze probability that
Yot < 1is 794% the probability of such cascades providing an overathaigtion
of a downstream perturbation is quite high. To explore wiefi®000 simulations
were enough to obtain meaningful probability figures, wewdalted at each new
simulation the percentage of all performed simulations bsulted in attenuation.
The probabilities converge for every stage to the valuesrgim Table 2, hence
performing more simulations will not significantly chandpe tresults (see Sl).

Intervals based on Bhalla et al. (31).We considered the nominal parame-
ter values given in (31) and then constructed intervals lying these values by
20%, 50%, and 80%. Specifically, for every parameter with inainvalue p, we
considered a confidence interval of the form{0.x) p, (1 + 0.x) p] for the three
different cases in whick = 2, x = 5, andx = 8. The results for these three dif-
ferent cases are shown in Table 3. Even when the parameteati@red to vary
by 80% from the nominal values, the probability that any gigtage attenuates
the perturbation is very high and the probability that theceale provides overall
attenuation (i.e.Wiot < 1) is 1. As performed in the previous case, the results of
Table 3 are obtained performing 10000 numerical simulatidn the SI, we show
that this number is large enough to attain convergence girbleabilities.

Intervals based on Levchenko et al. (32)We next considered the nominal
parameter values given in (32) and constructed intervalgabying these values
by 20%, 50%, and 80%. Specifically, for every parameter witmimal valuep,
we considered a confidence interval of the form(0.x) p, (1 + 0.X) p] for the
three diferent cases in whiclk = 2, x = 5, andx = 8. The results for these
three diferent cases are shown in Table 4. When the parameters anedlto
change by 50% with respect to the nominal values, the prbtyabf attenuation
at each stage is lower than the values obtained for the pteesnaf (31) (Table
3). With 80% parameter variation, there is a significant @etage of the possible
parameters (10%) that allows to overall amplify the dowaestn perturbation from
stage 3 to stage 1. Moreover, 50% of the parameters led todn&i > 1 or
¥, > 1 and only 2% of the parameters led to having bdth > 1 and¥, > 1.
Therefore, 50% of the possible parameter values lead toifawagibn in at least
one stage in the cascade. The results of Table 4 are obtagrémping 10000
numerical simulations. The Sl shows that by the time the Q@08imulation is
performed the probability has converged to its final value.
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We then analyzed how the lengthof the cascadeftects the overall attenua-
tion from stagen to stage 1, that is, how itfiects the gainP;. To perform this
study, we first simulated a ten-stage cascade 10000 timbghetsame parameter
ranges as given in Table 1. The result is shown in Table 5. Thieability of the
last two stagesi (= 8,9) attenuating the perturbation has significantly incrdase
compared to the three-stage case (Table 2). Furthermerprabability of overall
attenuation, that is, tha¥; < 1, is 100%. Hence, even when some stages am-
plify the downstream perturbation, the rest of the stagesige attenuation so that
the overall attenuation in the cascade is much more thanvi@lbamplification.
To confirm that 10000 simulations were enough to provide rimgdul probability
figures, we analyzed the convergence of the probability atieh simulation run
in the SI.

Finally, to study how the number of stages in a cascade implaetprobability
of overall attenuation, that is, the probability thit: < 1, we performed a num-
ber of numerical simulations extracting parameters fromititervals of Table 1
for cascades with increasing number of stages. The pratyabil overall atten-
uation monotonically increases as the number of stageseicdbcade increases
and it reaches 100% for cascades of length at least 6 (Figufeos each number
of stagesn, we performed a dficiently large number of simulations forftérent
values of the parameters sampled in the intervals of Tabked §I). This result
implies that for a fixed range of parameters, adding moreestagntributes signifi-
cantly to the probability of overall attenuation from stage stage 1. For example,
the probability of a three-stage cascade providing ovattghuation was found to
be 794% while, for the same range of parameters, the probabifity ten-stage
cascade providing overall attenuation was found to be 100%.

Discussion

Upstream to downstream signal transfer in signaling cascddtermines how ex-
ternal stimuli at the top of the cascade, such as growthifadb@rmones, and neu-
rotransmitters, fiect downstream targets, such as gene expression. Sevekal wo
focused on determining the sensitivity of each stage of eatiesto small pertur-
bations at the top of the cascade. In these studies, it waslfimat multiple stages
in the cascade can boost the overall cascade sensitivitgsiveam input stimuli
(8—10). Downstream to upstream signal transfer deterniinesa perturbation at
the bottom of the cascade due, for example, to a drug or tinghaisubstrate with
another signaling pathwayftacts the upstream stages of the cascade. This has not
been studied before. Here, we have studied for the first tiraedsponse of each
stage of a cascade to small perturbations in a substratéibitor at the bottom of
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the cascade. One of our results is that larger numbers @dstaghe cascade lead
to higher overall attenuation of the signal transfer fromvdstream to upstream.
This provides another reason why natural signaling cascaideusually composed
of multiple stages: more stages enforce unidirectionaladigropagation, which is

certainly desirable in any natural or human-made signaktrassion system.

We have computed analytical expressions of the downstteampstream gains
at each stage of the cascade as a function of the cascadegpermmThese ex-
pressions uncover two main structural properties of sipgatascades, which are
independent of the specific parameter values. First, theibation on the total
or free active protein concentration switches sign at etadiesof the cascade as it
propagates upstream. That is, if at one stage the amountiwé acotein increases
because of the perturbation, it must decrease at the nexeaps stage. Second,
the perturbation on the total amount of active protein isratated as it propagates
from one stage to the next one upstream. By contrast, the kepdrturbation
propagates on the free amount of active protein dependsecspttific parameter
values. We have provided afigient condition for attenuation, which applies to
general PD cascades and has a particularly simple meanihg special case of
weakly activated pathways. That is, for weakly activatethpays in which each
cycle operates in the hyperbolic regime, amplification okeyrbation at the top
of the cascade as it propagates downstream implies attenwdita perturbation at
the bottom of the cascade as it propagates upstream.

While simulation studies performed in (22) suggested thadréurbation is at-
tenuated as it propagates upstream in the cascade, théicalaypressions of the
gains found in this paper clearly show that amplificationhef perturbation on the
free protein concentration is also possible. In order tceustand whether natural
signaling cascades are more likely to attenuate or to aynplifownstream pertur-
bation on the free active protein concentration, we peréatianumerical study. In
this study, the gaii¥; at each stage was computed with parameter values randomly
extracted from biologically meaningful sets obtained frtra literature (28, 31—
33). This numerical study reveals that signaling cascadesubstantially more
likely to attenuate a downstream perturbation than to dgnfiliand that longer
signaling cascades have a higher probability of overadinathtion. However, in
signaling cascades of length 3, which is the most commorthefogind in prac-
tice, about 50% of the biologically meaningful parametedseh from (32) lead
to amplification at least at one stage and about 10% of theniteesin overall
amplification (from stage 3 to stage 1).

In summary, our findings suggest that ttigeets of crosstalk between signaling
pathways sharing common components can be felt even ugstethe common
component as opposed to only downstream of it as previougigved. This pro-
vides a new mechanism by which a pathway can become oveattias found
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in several pathological conditions such as cancer (13-A6jhe same time, our
study provides tools to understand how tlkeets of a targeted drug (26, 27) may
propagate to obtainfbtarget €fects and how thesdfects depend on the cascade
parameters.

This paper addresses cascades in which at each stage tlzesingle phos-
phorylation cycle. However, several natural cascade$) aa¢che MAPK cascade,
display double phosphorylation and experimental work grened in Drosophila
embryos has demonstrated that a perturbation in one of bstrates at the bottom
of the cascadeftects the phosphorylation level at the last cycle of the aes¢24).
Whether such a perturbation can propagate on the highds lef/the cascade was
not addressed. In future work, we thus plan to extend our ¢glirulations to cas-
cades with double phosphorylation in order to establishettient to which such
perturbations propagate on the higher levels of the MAPKa@s. It was shown in
previous work that the presence of double phosphorylagoriead to sustained o0s-
cillations even in the absence of explicit negative feell{8d). In such instances,
our analysis will have to extend to dynamic perturbations@sosed to static per-
turbations in order to understand how these oscillationpamyate upstream in the
cascade.

Recently published experimental papers clearly show thdatibations in the
downstream targets of a signaling cascade cause a peitarlathe immediate
upstream signaling stage. Specifically, (24) showed, tirdni vivo experiments
in the Drosophila Embryo, that changing the level of one ef $hbstrates of the
MAPK cascade influences the level of MAPK phosphorylatioddifionally, (23)
showed, through experiments on a reconstituted covaledifitation cycle, that
the addition of a downstream target changes the steadyvstate of the modified
protein of the upstream cycle. These results are promidiogiever, additional
experiments are required to validate the attenuaioplification predictions of
this paper on the higher levels of a cascade. Specificalligatang the prediction
that the perturbation on the total protein concentrati@ttsnuated as it propagates
upstream is particularly appealing asldes not depend on the specific parameter
values Furthermore, it requires to measure tb&l phosphorylated protein, which
is @ much easier task to accomplish than measurinfygeghosphorylated protein.
We plan to experimentally validate this prediction in outufe work.
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Tables
Parameten| Interval for simulation| Interval from (28)| Interval from (31)
k, k [6.3, 600] [150, 150] [6.3, 600]
ab [18.018, 4545.45] [2500, 2500] | [18.018, 4545.45]
ab [25.2, 2400] [600, 600] [25.2, 2400]
Eir [0.3, 224] [0.3, 120] [3.2, 224]
W [3, 1200] [3, 1200] [180, 360]
V_VS [0.3, 100] [0.3,0.3] [100, 100]
Dt [0, 1200] - -

Table 1: Conservative Intervals. For each of the paramefetitse cascade, we indicate
the interval considered for simulation and the intervalegiin (28) and (31). For simu-

lation, a uniform probability distribution over each intafis chosen to sample parameter
values. Also, each stage ha#fdient parameters even though all extracted from a uniform

probability distribution.

Table 2: Three-stage cascade attenuation percentage.afdmeters are taken randomly

from Table 1.

b 41 Wy | Yot

%of¥i<1

71.34| 55 | 79.4

k41 Y2 Wit
% of ¥; < 1 with 20% variation|| 100 100 | 100
% of ¥; < 1 with 50% variation|| 99.98 | 100 | 100
% of ¥; < 1 with 80% variation|| 96.895| 99.91| 100

Table 3: Three-stage cascade attenuation percentagedtinedi intervals about the nom-
inal parameter values of Bhalla et al. (31).

¥ ¥,

% of ¥; < 1 with 20% variation

77.49| 100

% of ¥; < 1 with 50% variation

65.85

93.32

% of ¥; < 1 with 80% variation

64.69

82.68

Table 4: Three-stage cascade attenuation percentagedtinedi intervals about the nom-
inal parameter values of Levchenko et al. (32).



Cascades Attenuate Retroactivity 20

[ 1 2 3 4 5 6 7 8 9 Yot
%of¥;<1| 67.3|71.8|729|73.3|73.7|745|729| 76.2| 59.8| 100

Table 5: Ten-stage cascade attenuation percentage foatampter values in Table 1.

Figure Legends

Figure 1.

A signaling cascade with stages of PD cycles. The phosphorylated protefn,W
of stagei — 1 functions as a kinase for protein; \Wf the next stage downstream.
Dephosphorylation is brought about by the phosphatas@ Bownstream pertur-

bation in the concentration of D, in which D can be a substshsred with other

signaling pathways or an inhibitor of the active enzymg, Yésults in a perturba-

tion of protein concentration in all upstream stages.

Figure 2.

A block diagram representation of the steady state respoihsegei to a small
downstream perturbation iBDt. The downstream perturbation propagates up-
stream through perturbatiomsin the complexes of active proteins with their down-
stream substrates.

Figure 3.

Attenuation and sign-reversal in a three-stage cascadelhe x-axis shows the
value of the perturbatiodr and the y-axis shows the steady state value of the re-
sulting perturbationsv;, w;, andw;. Simulation is performed on the full nonlinear
ODE model given by equation (2). The parameters of each $tagetaken from
(28) and are given bl = 150(miny !, ki = 150(min)?, a = 2.5(nM min)™%, 5 =
600(minYt, bj = 2.5(nM min) 2, bj = 600(min)t, Esr = 120nM, Eo1 = 0.3nM,

Eir = 0.3nM, Watr = 1200nM, Wyt = 1200nM, Wyt = 3nM,V_V3 = 0.3nM, and

Dt = OnM. As a resultK; = 300nM andK; = 300nM.

Figure 4.

Amplification in a three-stage cascade. Numerical simulation of system (2):
value of |w;| for i € {1,2,3} in response to a unit perturbatiay = 1. This
plot shows that violation of the necessary condition leadamplification of the
downstream perturbation as it transfers upstream in theadas Parameters of
stagei are given by:k = 150(miny?, ki = 150(min)?!, & = 2500(nM minY?,
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& = 600(min)™, by = 2500(nM min)*, b = 600(min)?, Esr = 120nM, Eor =
30nM, Eqr = 0.3nM, War = 3nM, Wor = 30nM, Wir = 1200nM,W, = 0.3nM,
andDt = 0.9nM.

Figure 5.

Percentage of overall attenuatidH{; < 1) as a function of the number of stages
in a cascade with parameters randomly selected from thevatseof Table 1.
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Figure 1
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Stage 1

wf = E‘(W}wfq - VVifle—l)

Figure 2
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