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Abstract

Signaling pathways consisting of phosphorylation/dephosphorylation (PD) cycles
with no explicit feedback allow signals to propagate not only from upstream to
downstream but also from downstream to upstream due to retroactivity at the inter-
connection between PD cycles. However, the extent to which adownstream pertur-
bation can propagate upstream in a signaling cascade and theparameters that affect
this propagation are presently unknown. Here, we determinethe downstream-to-
upstreamsteady state gain at each stage of the signaling cascade as a function
of the cascade parameters. This gain can be made smaller than1 (attenuation)
by sufficiently fast kinase rates compared to the phosphatase ratesand/or by suf-
ficiently large Michaelis-Menten constants and sufficiently low amounts of total
stage protein. Numerical studies performed on sets of biologically relevant param-
eters indicated that about 50% of these parameters could give rise to amplification
of the downstream perturbation at some stage in a 3-stage cascade. In ann-stage
cascade, the percentage of parameters that lead to an overall attenuation from the
last stage to the first stage monotonically increases with the cascade lengthn and
reaches 100% for cascades of length at least 6.

Key words: Signaling, mathematical model, numerical simulation, analytical
derivations
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Introduction

Signaling pathways are ubiquitous in living systems and cover a central role in a
cell’s ability to sense and respond to both external and internal input stimuli (1, 2).
Numerous signaling pathways consist of cycles of reversible protein modification,
such as phosphorylation/dephosphorylation (PD) cycles, wherein a protein is re-
versibly converted between two forms (3). Multiple PD cycles often appear con-
nected in a cascade fashion, such as in the MAPK cascades (4, 5), and the length
of the cascade has been shown to have important effects, for example, on signal
amplification, signal duration, and signaling time (6–8). In particular, a wealth of
work has been employing metabolic control analysis (MCA) approaches to analyt-
ically determine the amplification gains across the cascadeas a small perturbation
applied at the top of the cascade propagates toward the bottom stages (8–10). No
study has been performed on how perturbations at the bottom of a cascade propa-
gate toward the top of the cascade.

Since cascades often intersect each other by sharing commoncomponents, such
as protein substrates or kinases (11, 12), perturbations atbottom or intermediate
stages in a cascade can often occur. These intersections arealready known to cause
unwanted crosstalk between the signaling stages downstream of the intersection
point (13–16). However, no attention was given to crosstalkbetween the stages
upstream of the intersection point. Several of these works,in fact, viewed a signal-
ing cascade as the modular composition of PD cycles, resulting in a system where
the signal travels onlyfrom upstream to downstream. Theoretical work, however,
has shown that PD cycles (as several other biomolecular systems) cannot be modu-
larly connected with each other because of retroactivity effects at interconnections
(17–22). Initial experimental validation of these effects on the steady state response
of a PD cycle have also appeared (23–25). These effects change the behavior of
an upstream system when it is connected to its downstream clients and are relevant
especially in signaling cascades, in which each PD cycle hasseveral downstream
targets. As a result of retroactivity, signaling cascades allow signals to also travel
from downstream to upstream, that is, they allow bidirectional signal propagation
(22, 26). As a consequence, a perturbation at the bottom of the cascade can propa-
gate to the upstream stages and have repercussions on the overall signaling.

A perturbation at the bottom of a cascade can be due to a numberof factors.
For example, when a downstream target or a substrate is shared with other signal-
ing pathways, its free concentration is perturbed by these other pathways. Hence,
the amount of target/substrate available to the cascade under study can suddenly
change. Similarly, the introduction of an inhibitor of an active enzyme, as per-
formed in targeted drug design, creates a perturbation at the targeted stage of the
cascade. How large is the effect of such perturbations on the upstream stages? How
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does the length of a cascade impact backward signal transfer? On the one hand,
answering these questions will reveal the extent by which aberrant signaling in the
upstream stages of a cascade can be caused by retroactivity from sharing down-
stream targets/substrates. On the other hand, it will provide tools for targeted drug
design by quantifying the off-target effects of inhibitors on the upstream stages.

In this paper, we address these questions in cascades with a single phospho-
rylation cycle per stage by explicitly incorporating retroactivity in the PD cycle
model. Specifically, we consider small perturbations at thebottom of the cascade
and explicitly quantify for the first time how such perturbations propagate from
downstream to upstream. Our main results are as follows. We provide analytical
expressions for the downstream-to-upstream transmissiongains. These establish
the extent to which a perturbation at the bottom of the cascade can propagate up-
stream and provide sufficient conditions for attenuation. Through extensive nu-
merical simulation, we discovered that, surprisingly, natural cascades can amplify
a perturbation as it propagates upstream, but the probability of attenuation is sub-
stantially higher than that of amplification. Also, the probability of attenuation
increases with the number of stages in the cascade.

Methods

We consider a signaling cascade composed ofnphosphorylation/dephosphorylation
(PD) cycles as depicted in Figure 1. The sensitivity of response to perturbations
occurring at the top of the cascade, for example inW∗0, has been extensively studied
employing MCA approaches (8–10). By contrast, here we investigate the sensitiv-
ity of response of each cycle to a perturbation at the bottom of the cascade. This
perturbation can be due, for example, to an inhibitor of the active enzyme W∗n,
as it is employed in targeted drug design (27) or to the signaling from another
pathway sharing a substrate with W∗n. Our method is based on assuming a small
perturbation, on linearizing the system dynamics about thesteady state, and on de-
termining the corresponding change of each cycle phosphorylated protein. Since
our approach is based on linearization, it is similar in spirit to MCA approaches,
which also assume small perturbations and linearize the system dynamics. Here,
we are interested in determining how effectively the perturbation propagates up-
stream. We thus explicitly compute the sensitivity gain from one stage to the next
upstream as a function of the cascade parameters.
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Cascade Model

At each stagei, for i ∈ {1, ..., n}, we denote by W∗i−1 the kinase, by Ei the phos-
phatase, by Wi the protein substrate, and by W∗i the phosphorylated form of Wi.
The kinase W∗i−1 binds to Wi to form the substrate-kinase complex Xi . This com-
plex then turns into W∗i . The phosphorylated protein W∗i is in turn a kinase for
the next cycle and binds to downstream substrates, forming the complex Xi+1. The
phosphatase Ei activates the dephosphorylation of the protein W∗i by binding to W∗i
and forming the complex Yi. This complex is in turn converted to Wi . We employ
the following two-step reaction model for each phosphorylation and dephosphory-
lation reaction (28, 29) at stagei ∈ {1, ..., n} of the cascade:

Wi +W∗i−1

ai
−⇀↽−
ai

X i
ki
−→W∗i +W∗i−1

W∗i + Ei
bi
−⇀↽−
bi

Y i
ki
−→Wi + Ei .

We assume that protein Wi and phosphatase Ei are conserved at every stage, and
are in total amountsWiT andEiT , respectively. Therefore, we have the conservation
relations

Wi +W∗i + Xi + Yi + Xi+1 =WiT

Ei + Yi = EiT , (1)

in which for a species X we have denoted byX (italics) its concentration. We
assume that the input kinase to the first stage, W∗

0, is produced at ratek(t) and
decays at rateδ, that is,

W∗0
δ
−−⇀↽−−
k(t)
∅.

Finally, we assume that the output protein of the last stage,W∗n, reacts with species
D downstream of the cascade. These species D can model, for example, a signaling
molecule or an inhibitor of the active enzyme W∗n (a drug) such as considered in
targeted drug design (27), in which the total concentrationof D can be perturbed,
for example, by adding more drug. Species D can also model a substrate that is
shared with other signaling pathways. In this case, D is a substrate for another
active enzyme, say S, whose concentration is controlled by another signaling cas-
cade. Hence, the amount of free D plus the amount of D bound to W∗

n, which we
call DT, can be perturbed (it can increase or decrease) by a change inthe concen-
tration of the active enzyme S. Denoting by Xn+1 the complex formed by W∗n and
D, we have that

W∗n + D
an+1
−−−⇀↽−−−
an+1

Xn+1 with DT , D + Xn+1.
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In this study, we considerDT as the parameter to be perturbed and calculate the
sensitivity of the steady state response of each cycle active protein to small pertur-
bations inDT .

The differential equations that describe the dynamics of the cascade are given,
for i ∈ {1, ..., n}, by

Ẇ∗0 = −δW∗0 + k(t) − (a1W∗0W1 − (a1 + k1)X1)

Ẋi = aiW
∗
i−1Wi − (ai + ki)Xi ,

Ẇ∗i = kiXi − biW
∗
i Ei + biYi − (ai+1W∗i Wi+1 − (ai+1 + ki+1)Xi+1)

Ẏi = biW
∗
i Ei − (bi + ki)Yi

Ẇ∗n = knXn − bnW∗nEn + bnYn − (an+1DW∗n − an+1Xn+1)

Ẋn+1 = an+1DW∗n − an+1Xn+1.

Recognizing that the terms in the boxes correspond toẊ1, Ẋi+1, andẊn+1, respec-
tively, and employing the conservation law (1), we obtain for i ∈ {1, ..., n} that

Ẇ∗0 = −δW∗0 + k(t) − Ẋ1

Ẋi = aiW
∗
i−1(WiT −W∗i − Xi − Yi − Xi+1) − (ai + ki)Xi

Ẇ∗i = kiXi − biW
∗
i (EiT − Yi) + biYi − Ẋi+1 (2)

Ẏi = biW
∗
i (EiT − Yi) − (bi + ki)Yi

Ẋn+1 = an+1(DT − Xn+1)W∗n − an+1Xn+1.

Perturbation Analysis

In this section, we consider the cascade to be at the steady state and investigate how
a small perturbation in the concentrationDT perturbs the steady state concentra-
tions at every stage of the cascade. We denote the steady state value of the upstream
input k(t) by k and that ofDT by DT . The corresponding equilibrium values of the
protein concentrationsW∗0, W∗i , Xi, Yi, Wi, for i ∈ {1, ..., n}, andXn+1 are denoted

by W
∗

0, W
∗

i , Xi, Yi , Wi , for i ∈ {1, ..., n}, andXn+1, respectively. We represent the
perturbation ofDT with respect to its steady state value bydT := DT − DT . Note
that if dT > 0, the downstream perturbation is positive, that is, the concentration
DT increases. If insteaddT < 0, the downstream perturbation is negative, that is,
the concentrationDT decreases. Hence, both positive and negative perturbations
are considered. The corresponding perturbations of the states of the cascade about
the equilibrium valuesW

∗

0, W
∗

i , Xi , Yi , for i ∈ {1, ..., n}, andXn+1 are denoted by
w∗0, w∗i , xi, yi , for i ∈ {1, ..., n}, andxn+1, respectively. Similarly, denote byZi for
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i ∈ {1, ..., n} the concentration of thetotal phosphorylated protein at stagei, that
is, Zi := W∗i + Yi + Xi+1. Denote the corresponding perturbation about the steady

stateZi = W
∗

i + Yi + Xi+1 by zi , which can be written aszi = w∗i + yi + xi+1 for all
i ∈ {1, ..., n}.

The linearization of system (2) about the equilibriumW
∗

0, W
∗

i , Xi , Yi , andXn+1,
for i ∈ {1, ..., n} is given by

ẇ∗0 = −δw
∗
0 − ẋ1

ẋi = aiWiw
∗
i−1 + aiW

∗

i−1(−w∗i − xi − yi − xi+1) − (ai + ki)xi

ẇ∗i = ki xi + biW
∗

i yi − biEiw
∗
i + biyi − ẋi+1 (3)

ẏi = −biW
∗

i yi + biEiw
∗
i − (bi + ki)yi

ẋn+1 = an+1Dw∗n − an+1W
∗

nxn+1 − an+1xn+1 + an+1W
∗

ndT ,

in which we have fori ∈ {1, ..., n} that (from setting the time derivatives in equations
(2) equal to zero)

W
∗

0 =
k
δ

(4)

Wi = Ki
ki

ki

Ei

W
∗

i + K i

1+
W
∗

i

K i


W
∗

i

W
∗

i−1

(5)

Yi =
EiT

1+ Ki/W
∗

i

(6)

Xi =
ki

ki
Yi , (7)

in which K i := b̄i+ki
bi

is the Michaelis-Menten constant of the dephosphorylation

reaction, whileKi := āi+ki
ai

is the Michaelis-Menten constant of the phosphorylation
reaction.

Since we are interested in the steady state values ofw∗i , we set the time deriva-
tives to zero in system (3) to obtain

xi =
ki

ki
Ẽiw

∗
i (8)

w∗i = Ti(Wiw
∗
i−1 −W

∗

i−1xi+1), (9)
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for i ∈ {1, ..., n}, in which

Ẽi ,
KiEiT

(W̄∗i + Ki)2
(10)

Ti ,
1

W
∗

i−1 + Ẽi(W
∗

i−1 +
ki
ki

(W
∗

i−1 + Ki))
. (11)

Figure 2 represents relations (8) and (9) in a block diagram form, which highlights
the directionality of signal propagation through the stages in the cascade. Basically,
the perturbationdT propagates upstream in the cascade through perturbations in the
complexesXi. Hence, in this steady state response model, retroactivityis due to
the complexXi of the active protein with its downstream substrate.

Results

Analytical Results

Referring to Figure 2, the perturbationdT propagates upstream through perturba-
tions xi and causes perturbationszi and w∗i in the total and free phosphorylated
protein concentrations, respectively, at every stage. Howdo these perturbations
transfer from one stage of the cascade to the next one upstream? In order to answer
this question, we calculate the gains

Φi :=
|zi |

|zi+1|
andΨi :=

|w∗i |

|w∗i+1|

at every stagei. A gain greater than one means that small perturbations are ampli-
fied as they transfer from downstream to upstream, while a gain smaller than one
means that small perturbations are attenuated as they transfer from downstream to
upstream.

Since|zi | = Φi |zi+1|, we have that|z1| =


n−1∏

i=1

Φi

 |zn| where “
∏

” denotes multi-

plication. We thus define thetotal gainΦtot from stagen to stage 1 as

Φtot :=
n−1∏

i=1

Φi .

Similarly, thetotal gainΨtot from stagen to stage 1 is defined as

Ψtot :=
n−1∏

i=1

Ψi .
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Having a total gain smaller than one means that overall the cascade attenuates
downstream perturbations, even if some stages may amplify the perturbation.

We first focus on the gainsΦi of total active protein concentration. The total
active protein concentration can be experimentally determined by measuring pro-
tein activity through phospho-specific antibodies (30). Bycontrast, the free active
protein may be more difficult to measure. When it is an active transcription factor,
it can be measured indirectly, for example, by placing a reporter gene under the
control of the promoter that it regulates. The expression ofthe gainΦi at each
stagei can be explicitly calculated as a function of the cascade parameters from
the relations in the block diagram of Figure 2 (see SI). This expression is given by

Φi =


Ẽi

ki
ki
+ Fi

1+ Ẽi + Ẽi
ki
ki
+ Fi





ki+1
ki+1

Ẽi+1

ki+1
ki+1

Ẽi+1 + Fi+1

 for all i ∈ {1, ..., n− 1},

in whichFi andFi+1 are positive quantities. Since
Ẽi

ki
ki
+Fi

1+Ẽi+Ẽi
ki
ki
+Fi

< 1 and
ki+1
ki+1

Ẽi+1

Ẽi+1
ki+1
ki+1
+Fi+1

<

1, we have that
Φi < 1, for all i ∈ {1, ..., n− 1},

Furthermore, we have that (see SI)

sign(zi ) = −sign(zi+1) for all i ∈ {1, ..., n− 1},

that is, an increase ofZi+1 implies a decrease ofZi. Therefore, there is a sign rever-
sal of the perturbation on the total phosphorylated proteinconcentration across the
stages and the magnitude of the perturbation at every stage is alwaysattenuated as
it propagates upstream in the cascade. That is,|z1| < |z2| < ... < |zn−1| < |zn| for all
parameter values. Furthermore, this implies also that we have overall attenuation
from downstream to upstream in the cascade, that is,Φtot < 1. Since these facts
do not depend on the specific parameter values or the length ofthe cascade, they
highlight a new structural property of signaling cascades.

For the perturbation on the free active protein concentration, we also have that
(see SI)

sign(w∗i ) = −sign(w∗i+1) for all i ∈ {1, ..., n− 1},

that is, when the perturbationw∗i+1 is positive the next upstream stage has a per-
turbationw∗i with negative sign. Hence, if the downstream perturbation causes a
decrease of the active protein concentration at one stage, it causes an increase of the
active protein concentration in the next upstream stage. Anexpression of the stage
gainΨi can be calculated as a function of the cascade parameters starting from the
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relations of the block diagram of Figure 2. The exact expression is calculated in
the SI and it is such that

Ψi ≤

ki+1
ki+1

E(i+1)T

Ki+1

1+ EiT(
K i+WiT

)(
1+

WiT
Ki

)
(
1+ ki

ki

(
1+ Ki

W(i−1)T

)) . (12)

Therefore, one can control the amount of attenuation/amplification through the cas-
cade parameters as follows. The smaller theW(i−1)T , the more the attenuation from
stagei +1 to i (i.e., the smaller the upper bound onΨi in equation (12)). Moreover,
sufficiently large values ofKi andK i for all i lead to an increased attenuation at
every stage. In turn, largeKi andK i and smallWiT are responsible for a decreased
sensitivity of the response of stagei to upstream stimuli (29). As a consequence,
a more graded upstream to downstream response at all stages is associated with an
increased attenuation of downstream perturbations.

From expression (12), it also follows that a sufficient condition for having at-
tenuation at stagei of the downstream perturbation is that

k̄i+1

ki+1

E(i+1)T

K i+1

< 1.

This condition is valid for general PD cascades. However, ithas a particularly
simple meaning in the case in which the signaling pathway is weakly activated as
explained in what follows. In (6), it was found that a requirement for upstream to
downstream signal amplification is that the phosphorylation rate constant should
be larger than the dephosphorylation rate constant. For a weakly activated pathway
with Ki ≫ W(i−1)T , the phosphorylation rate constant is well approximated by
αi := kiWiT /Ki (see SI). In the case in whichK i ≫ WiT , the dephosphorylation
rate constant is well approximated byβi := kiEiT /K i (see SI). As a consequence,
to have upstream-to-downstream signal amplification, it isrequired thatαi > βi,
which, whenKi ≥ WiT , implies thatk̄i

ki

EiT

Ki
< 1. This, in turn, implies thatΨi−1 < 1

and hence that the downstream perturbation is attenuated asit transfers from stage
i to stagei−1. Hence, in weakly activated pathways in whichKi ≥WiT , K i ≫WiT ,
andKi ≫ W(i−1)T , upstream to downstream signal amplification is associatedwith
attenuation of downstream perturbations as they transfer upstream. This, in turn,
implies unidirectional signal propagation from upstream to downstream.

From expression (12), it also follows that a necessary condition for having
Ψi > 1, that is, for amplifying a downstream perturbation as it transfers from stage
i + 1 to stagei, is that k̄i+1

ki+1

E(i+1)T

K i+1
> 1. This condition, in turn, in the case in which

K i+1 ≫ W(i+1)T , W(i+1)T ≤ Ki+1, andKi+1 ≫ WiT implies that the phosphorylation
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rate constantαi+1 is smaller than the dephosphorylation rate constantβi+1. As a
consequence, there is no amplification at stagei + 1 of the signal traveling from
upstream to downstream as the required condition for amplification as determined
by (6) is violated. Hence, in weakly activated pathways in which Ki+1 ≥ W(i+1)T ,
K i+1 ≫ W(i+1)T , andKi+1 ≫ WiT if a downstream perturbation is amplified as it
propagates from stagei + 1 to stagei, then there is no amplification from stagei to
stagei + 1 for the signal traveling from upstream to downstream in response to a
stimulus at the top of the cascade.

From the expressions ofΨi , we can also derive a necessary condition for atten-
uation (see SI). Specifically, to haveΨi < 1 at stagei it is necessary that

ki+1
ki+1

K i+1E(i+1)T

(W̄∗i+1+K i+1)2

1+ K i EiT

(W̄∗i +K i )2

[
1+ ki

ki

(
1+ Ki

W
∗

i−1

(
1+
(
1+ W

∗

i

K i

)
W
∗

i

W
∗

i−1

))] < 1. (13)

If the necessary condition is violated at stagei, then either stagei − 1 or stagei
amplify the downstream perturbation. This expression can be employed to deter-
mine parameter values for which amplification of the downstream perturbation can
result at any given stage and can be useful to determine the efficacy of the off-target
effects of an inhibitor.

To conclude the analytical study, we investigate howdT affectsw∗n andzn. It
can be shown (see SI) that|w∗n| < |dT | and that|zn| < |dT |. That is, the perturbation
dT induces changesw∗n andzn aboutW

∗

n andZn, respectively, that are less thandT in
magnitude, regardless of the parameters. Also, we have thatsign(dT ) = −sign(w∗n)
andsign(dT ) = −sign(zn).

Numerical Results

In this section, we first illustrate the results on a three-stage cascade example. We
then employ the analytically computed expressionsΨi to determine the probability
that natural cascades attenuate a downstream perturbationas it transfers upstream
in the cascade. We finally study the effect of the length of the cascade on the overall
gainΨtot. All simulations are performed on the full nonlinear model of equations
(2) in MATLAB using the built-in ODE23s solver.

Figure 3 shows how the perturbation propagates upstream in athree-stage cas-
cade for the parameter values of (28). This Figure illustrates that, surprisingly, the
relationship betweenw∗i and dT is approximately linear even for large perturba-
tionsdT (up to 400 nM). Hence, the theoretical results must hold. In particular, the
values ofw∗1 andw∗3 are negative while the value ofw∗2 is positive. That is, the per-
turbation onW∗i switches sign from one stage to the next upstream. The gainsΨi
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calculated from the expression in the SI for the parameter values of (28) are given
by Ψ1 = 2.45× 10−5 andΨ2 = 2.14× 10−2. SinceΨ1 andΨ2 are both smaller
than 1, the cascade should attenuate the downstream perturbation at every stage.
This is confirmed by Figure 3 in which for the same value ofdT , we have that
|w∗i | becomes smaller and smaller as the stagei decreases (i.e., as the perturbation
propagates upstream). Since the values ofΨi are much smaller than 1, this three-
stage cascade practically enforces unidirectional signalpropagation from upstream
to downstream. Note that as long as the applied perturbationdT is small enough,
the relationship betweendT andw∗i is linear and hence all our results hold indepen-
dently of the parameter values. Additional examples for different parameter values
are provided in the SI.

To validate the necessary condition for attenuation at stage i, we constructed a
parameter set that violates the necessary condition for attenuation (13). In this case,
we should expect that at the stagei for whichΨi > 1, the downstream perturbation
is amplified, that is,|w∗i | > |w

∗
i+1|. The necessary condition (13) can be violated by

choosing phosphatase amounts that increase with the stage number, that is,E1T ≪

E2T ≪ E3T and substrate amounts that decrease with the stage number, that is,
W1T ≫ W2T ≫ W3T . We utilized these conditions and constructed a cascade
that amplifies downstream perturbations. The result is shown in Figure 4. The
resulting parameter values are still biologically meaningful as they are contained
in the parameter intervals estimated in (28). Therefore, these cascades are capable
of also transmitting a perturbation from downstream to upstream by amplifying its
amplitude.

Do natural signaling cascades attenuate downstream perturbations?

In order to determine the probability that a natural signaling cascade attenuates
or amplifies downstream perturbations, we evaluated the expression of the gains
Ψi on parameters extracted with uniform probability distribution from intervals
taken from the literature (28, 31–33). We present the results first for a three-stage
cascade starting from conservative intervals and we progressively reduce the size
of the intervals. In all cases, each parameter has a range anda uniform probability
distribution is used to sample parameters for each range. Also, even though the
range of parameters for each cycle is the same, in the simulations each cycle has
different parameters (randomly picked from the given range).

Conservative intervals.In this case, we randomly chose parameters through a
uniform probability distribution from the intervals givenin Table 1. The maximum
and minimum values of the intervals were chosen to be the maximum and minimum
of the union of the intervals defined in (28) and (31). This is aconservative way of
choosing the intervals as the parameters of (28) and (31) aretaken from different
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organisms. In selecting the range forDT, we assumed that D is a downstream
protein substrate and thus its interval of variation was chosen to be the same as
that forWiT . We simulated the three-stage cascade 10000 times and the results are
reported in Table 2. This table shows the percentage of simulations that resulted
in Ψi < 1 for everyi ∈ {1, 2}, that is, that resulted in attenuation at stagei. The
probability of stage 1 attenuating the downstream perturbation is 71.34% and the
probability of stage 2 attenuating it is 55%. Moreover, since the probability that
Ψtot < 1 is 79.4% the probability of such cascades providing an overall attenuation
of a downstream perturbation is quite high. To explore whether 10000 simulations
were enough to obtain meaningful probability figures, we calculated at each new
simulation the percentage of all performed simulations that resulted in attenuation.
The probabilities converge for every stage to the values given in Table 2, hence
performing more simulations will not significantly change the results (see SI).

Intervals based on Bhalla et al. (31).We considered the nominal parame-
ter values given in (31) and then constructed intervals by varying these values by
20%, 50%, and 80%. Specifically, for every parameter with nominal valuep, we
considered a confidence interval of the form [(1− 0.x) p, (1+ 0.x) p] for the three
different cases in whichx = 2, x = 5, andx = 8. The results for these three dif-
ferent cases are shown in Table 3. Even when the parameters are allowed to vary
by 80% from the nominal values, the probability that any given stage attenuates
the perturbation is very high and the probability that the cascade provides overall
attenuation (i.e.,Ψtot < 1) is 1. As performed in the previous case, the results of
Table 3 are obtained performing 10000 numerical simulations. In the SI, we show
that this number is large enough to attain convergence of theprobabilities.

Intervals based on Levchenko et al. (32).We next considered the nominal
parameter values given in (32) and constructed intervals byvarying these values
by 20%, 50%, and 80%. Specifically, for every parameter with nominal valuep,
we considered a confidence interval of the form [(1− 0.x) p, (1 + 0.x) p] for the
three different cases in whichx = 2, x = 5, andx = 8. The results for these
three different cases are shown in Table 4. When the parameters are allowed to
change by 50% with respect to the nominal values, the probability of attenuation
at each stage is lower than the values obtained for the parameters of (31) (Table
3). With 80% parameter variation, there is a significant percentage of the possible
parameters (10%) that allows to overall amplify the downstream perturbation from
stage 3 to stage 1. Moreover, 50% of the parameters led to having Ψ1 > 1 or
Ψ2 > 1 and only 2.2% of the parameters led to having bothΨ1 > 1 andΨ2 > 1.
Therefore, 50% of the possible parameter values lead to amplification in at least
one stage in the cascade. The results of Table 4 are obtained performing 10000
numerical simulations. The SI shows that by the time the 10000th simulation is
performed the probability has converged to its final value.



Cascades Attenuate Retroactivity 13

We then analyzed how the lengthn of the cascade affects the overall attenua-
tion from stagen to stage 1, that is, how it affects the gainΨtot. To perform this
study, we first simulated a ten-stage cascade 10000 times with the same parameter
ranges as given in Table 1. The result is shown in Table 5. The probability of the
last two stages (i = 8, 9) attenuating the perturbation has significantly increased
compared to the three-stage case (Table 2). Furthermore, the probability of overall
attenuation, that is, thatΨtot < 1, is 100%. Hence, even when some stages am-
plify the downstream perturbation, the rest of the stages provide attenuation so that
the overall attenuation in the cascade is much more than the overall amplification.
To confirm that 10000 simulations were enough to provide meaningful probability
figures, we analyzed the convergence of the probability after each simulation run
in the SI.

Finally, to study how the number of stages in a cascade impacts the probability
of overall attenuation, that is, the probability thatΨtot < 1, we performed a num-
ber of numerical simulations extracting parameters from the intervals of Table 1
for cascades with increasing number of stages. The probability of overall atten-
uation monotonically increases as the number of stages in the cascade increases
and it reaches 100% for cascades of length at least 6 (Figure 5). For each number
of stages,n, we performed a sufficiently large number of simulations for different
values of the parameters sampled in the intervals of Table 1 (see SI). This result
implies that for a fixed range of parameters, adding more stages contributes signifi-
cantly to the probability of overall attenuation from stagen to stage 1. For example,
the probability of a three-stage cascade providing overallattenuation was found to
be 79.4% while, for the same range of parameters, the probability of a ten-stage
cascade providing overall attenuation was found to be 100%.

Discussion

Upstream to downstream signal transfer in signaling cascades determines how ex-
ternal stimuli at the top of the cascade, such as growth factors, hormones, and neu-
rotransmitters, affect downstream targets, such as gene expression. Several works
focused on determining the sensitivity of each stage of a cascade to small pertur-
bations at the top of the cascade. In these studies, it was found that multiple stages
in the cascade can boost the overall cascade sensitivity to upstream input stimuli
(8–10). Downstream to upstream signal transfer determineshow a perturbation at
the bottom of the cascade due, for example, to a drug or to sharing a substrate with
another signaling pathway, affects the upstream stages of the cascade. This has not
been studied before. Here, we have studied for the first time the response of each
stage of a cascade to small perturbations in a substrate or inhibitor at the bottom of
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the cascade. One of our results is that larger numbers of stages in the cascade lead
to higher overall attenuation of the signal transfer from downstream to upstream.
This provides another reason why natural signaling cascades are usually composed
of multiple stages: more stages enforce unidirectional signal propagation, which is
certainly desirable in any natural or human-made signal transmission system.

We have computed analytical expressions of the downstream-to-upstream gains
at each stage of the cascade as a function of the cascade parameters. These ex-
pressions uncover two main structural properties of signaling cascades, which are
independent of the specific parameter values. First, the perturbation on the total
or free active protein concentration switches sign at each stage of the cascade as it
propagates upstream. That is, if at one stage the amount of active protein increases
because of the perturbation, it must decrease at the next upstream stage. Second,
the perturbation on the total amount of active protein is attenuated as it propagates
from one stage to the next one upstream. By contrast, the way the perturbation
propagates on the free amount of active protein depends on the specific parameter
values. We have provided a sufficient condition for attenuation, which applies to
general PD cascades and has a particularly simple meaning inthe special case of
weakly activated pathways. That is, for weakly activated pathways in which each
cycle operates in the hyperbolic regime, amplification of a perturbation at the top
of the cascade as it propagates downstream implies attenuation of a perturbation at
the bottom of the cascade as it propagates upstream.

While simulation studies performed in (22) suggested that aperturbation is at-
tenuated as it propagates upstream in the cascade, the analytical expressions of the
gains found in this paper clearly show that amplification of the perturbation on the
free protein concentration is also possible. In order to understand whether natural
signaling cascades are more likely to attenuate or to amplify a downstream pertur-
bation on the free active protein concentration, we performed a numerical study. In
this study, the gainΨi at each stage was computed with parameter values randomly
extracted from biologically meaningful sets obtained fromthe literature (28, 31–
33). This numerical study reveals that signaling cascades are substantially more
likely to attenuate a downstream perturbation than to amplify it and that longer
signaling cascades have a higher probability of overall attenuation. However, in
signaling cascades of length 3, which is the most common length found in prac-
tice, about 50% of the biologically meaningful parameters taken from (32) lead
to amplification at least at one stage and about 10% of them resulted in overall
amplification (from stage 3 to stage 1).

In summary, our findings suggest that the effects of crosstalk between signaling
pathways sharing common components can be felt even upstream of the common
component as opposed to only downstream of it as previously believed. This pro-
vides a new mechanism by which a pathway can become over-activated as found
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in several pathological conditions such as cancer (13–16).At the same time, our
study provides tools to understand how the effects of a targeted drug (26, 27) may
propagate to obtain off-target effects and how these effects depend on the cascade
parameters.

This paper addresses cascades in which at each stage there isa single phos-
phorylation cycle. However, several natural cascades, such as the MAPK cascade,
display double phosphorylation and experimental work performed in Drosophila
embryos has demonstrated that a perturbation in one of the substrates at the bottom
of the cascade affects the phosphorylation level at the last cycle of the cascade (24).
Whether such a perturbation can propagate on the higher levels of the cascade was
not addressed. In future work, we thus plan to extend our gaincalculations to cas-
cades with double phosphorylation in order to establish theextent to which such
perturbations propagate on the higher levels of the MAPK cascade. It was shown in
previous work that the presence of double phosphorylation can lead to sustained os-
cillations even in the absence of explicit negative feedback (34). In such instances,
our analysis will have to extend to dynamic perturbations asopposed to static per-
turbations in order to understand how these oscillations propagate upstream in the
cascade.

Recently published experimental papers clearly show that perturbations in the
downstream targets of a signaling cascade cause a perturbation in the immediate
upstream signaling stage. Specifically, (24) showed, through in vivo experiments
in the Drosophila Embryo, that changing the level of one of the substrates of the
MAPK cascade influences the level of MAPK phosphorylation. Additionally, (23)
showed, through experiments on a reconstituted covalent modification cycle, that
the addition of a downstream target changes the steady statevalue of the modified
protein of the upstream cycle. These results are promising;however, additional
experiments are required to validate the attenuation/amplification predictions of
this paper on the higher levels of a cascade. Specifically, validating the prediction
that the perturbation on the total protein concentration isattenuated as it propagates
upstream is particularly appealing as itdoes not depend on the specific parameter
values. Furthermore, it requires to measure thetotal phosphorylated protein, which
is a much easier task to accomplish than measuring thefreephosphorylated protein.
We plan to experimentally validate this prediction in our future work.
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Tables

Parameter Interval for simulation Interval from (28) Interval from (31)
k, k [6.3, 600] [150, 150] [6.3, 600]
a, b [18.018, 4545.45] [2500, 2500] [18.018, 4545.45]
a, b [25.2, 2400] [600, 600] [25.2, 2400]
EiT [0.3, 224] [0.3, 120] [3.2, 224]
WiT [3, 1200] [3, 1200] [180, 360]
W
∗

0 [0.3, 100] [0.3, 0.3] [100, 100]
DT [0, 1200] - -

Table 1: Conservative Intervals. For each of the parametersof the cascade, we indicate
the interval considered for simulation and the intervals given in (28) and (31). For simu-
lation, a uniform probability distribution over each interval is chosen to sample parameter
values. Also, each stage has different parameters even though all extracted from a uniform
probability distribution.

Ψ1 Ψ2 Ψtot

% ofΨi < 1 71.34 55 79.4

Table 2: Three-stage cascade attenuation percentage. The parameters are taken randomly
from Table 1.

Ψ1 Ψ2 Ψtot

% ofΨi < 1 with 20% variation 100 100 100
% ofΨi < 1 with 50% variation 99.98 100 100
% ofΨi < 1 with 80% variation 96.895 99.91 100

Table 3: Three-stage cascade attenuation percentage for different intervals about the nom-
inal parameter values of Bhalla et al. (31).

Ψ1 Ψ2 Ψtot

% ofΨi < 1 with 20% variation 77.49 100 100
% ofΨi < 1 with 50% variation 65.85 93.32 97.07
% ofΨi < 1 with 80% variation 64.69 82.68 90.91

Table 4: Three-stage cascade attenuation percentage for different intervals about the nom-
inal parameter values of Levchenko et al. (32).
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i 1 2 3 4 5 6 7 8 9 Ψtot

% ofΨi < 1 67.3 71.8 72.9 73.3 73.7 74.5 72.9 76.2 59.8 100

Table 5: Ten-stage cascade attenuation percentage for the parameter values in Table 1.

Figure Legends

Figure 1.

A signaling cascade withn stages of PD cycles. The phosphorylated protein W∗
i−1

of stagei − 1 functions as a kinase for protein Wi of the next stage downstream.
Dephosphorylation is brought about by the phosphatase Ei . A downstream pertur-
bation in the concentration of D, in which D can be a substrateshared with other
signaling pathways or an inhibitor of the active enzyme W∗n, results in a perturba-
tion of protein concentration in all upstream stages.

Figure 2.

A block diagram representation of the steady state responseof stagei to a small
downstream perturbation inDT . The downstream perturbation propagates up-
stream through perturbationsxi in the complexes of active proteins with their down-
stream substrates.

Figure 3.

Attenuation and sign-reversal in a three-stage cascade.The x-axis shows the
value of the perturbationdT and the y-axis shows the steady state value of the re-
sulting perturbationsw∗1, w∗2, andw∗3. Simulation is performed on the full nonlinear
ODE model given by equation (2). The parameters of each stagei are taken from
(28) and are given byki = 150(min)−1, ki = 150(min)−1, ai = 2.5(nM min)−1, ai =

600(min)−1, bi = 2.5(nM min)−1, bi = 600(min)−1, E3T = 120nM,E2T = 0.3nM,
E1T = 0.3nM, W3T = 1200nM,W2T = 1200nM,W1T = 3nM, W

∗

0 = 0.3nM, and
DT = 0nM. As a result,Ki = 300nM andKi = 300nM.

Figure 4.

Amplification in a three-stage cascade.Numerical simulation of system (2):
value of |w∗i | for i ∈ {1, 2, 3} in response to a unit perturbationdT = 1. This
plot shows that violation of the necessary condition leads to amplification of the
downstream perturbation as it transfers upstream in the cascade. Parameters of
stagei are given by:ki = 150(min)−1, ki = 150(min)−1, ai = 2500(nM min)−1,
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ai = 600(min)−1, bi = 2500(nM min)−1, bi = 600(min)−1, E3T = 120nM,E2T =

30nM, E1T = 0.3nM, W3T = 3nM, W2T = 30nM, W1T = 1200nM,W
∗

0 = 0.3nM,
andDT = 0.9nM.

Figure 5.

Percentage of overall attenuation (Ψtot < 1) as a function of the number of stages
in a cascade with parameters randomly selected from the intervals of Table 1.
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Figure 1
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Figure 2
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